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Surface and pseudo-surface acoustic waves piezoelectrically excited
in diamond-based structures
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Surface and pseudo-surface acoustic plane waves generated in two- and three-layer AlN/Diamond

and AlN/Diamond/c-TiAl structures by a point electric source are analyzed in the mathematical

framework based on the Green’s matrix integral representation and guided wave asymptotics derived

using the residue technique. The attention is focused on the effect of pseudo-surface-to-surface wave

degeneration at certain discrete values of h=k (h is the thickness of the piezoelectric layer and k is the

wave-length). Earlier such optimal ratios were discovered and experimentally verified for the first

pseudo-surface (Sezawa) wave mode in the AlN/Diamond structure. The present research reveals this

effect for higher modes as well as examines its manifestation for three-layer structures with different

diamond-to-AlN thickness ratios H/h. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4754431]

I. INTRODUCTION

Polycrystalline diamond film layers are considered as

attractive substrates for surface acoustic wave (SAW) devi-

ces operating at gigahertz frequencies because the diamond

provides the highest acoustic wave velocity among all other

materials.1–3 To enable SAW excitation by interdigital trans-

ducers (IDTs), non-piezoelectric diamond layers are covered

with thin piezoelectric coatings. Among those, ZnO and AlN

films are in the focus of current research as they also possess

high acoustic wave velocities.4–10

The geometry of such a structure composed of a dia-

mond layer of thickness H covered by a piezoelectric film of

thickness h with strip-like IDT electrodes attached to its sur-

face is shown in Fig. 1. The diamond is underlain by a metal-

lic half-space substrate. The electric potential p supplied via

the IDT to the contact area X causes an electric field E speci-

fied in the whole space by the electric potential u : E

¼ �ru. Due to the piezoelectric effect, the electric field E

generates a coupled displacement field u transmitted via the

bonding interfaces from the upper piezocoating over the

whole structure. The steady-state time-harmonic oscillations

ue�ixt and ue�ixt are described by a boundary value problem

(BVP) formulated with respect to their complex amplitudes

u and u.

Under the assumption of y-independent in-plane dis-

placements u ¼ ðux; uzÞT , a SAW propagation in the orthog-

onal to the electrodes x-direction is specified by the terms

unðx; zÞe�ixt ¼ anðzÞeiðknx�xtÞ; n ¼ 1; 2;…;N; (1)

where an are vectors of SAW displacement amplitudes, kn

are wavenumbers, and x is angular frequency. Hereinafter,

vectors are given in bold, while scalars and matrices are

not emphasized. The phase velocities cn ¼ x=kn and the

wavelengths kn ¼ 2p=kn are routinely expressed via the

wavenumbers kn; n is order number, and N is the total

amount of SAWs supported by the structure at a specific fre-

quency x. In a multilayered half-space, N increases as x
grows and the phase velocities cn ¼ cnðxÞ are frequency de-

pendent. Thus, the SAWs of form (1), including the first

Rayleigh one, are undamped waves propagating with

dispersion.

In addition to SAWs, layered half-space structures sup-

port so-called pseudo-surface acoustic waves (PSAWs) prop-

agating with exponential attenuation caused by a wave

energy leakage into the lower half-space.11 The PSAW terms

un look similar to the SAW ones, differing only by additional

damping factors e�dnx=kn

unðx; zÞ ¼ anðzÞeiknxe�dnx=kn ; n ¼ N þ 1;N þ 2;…: (2)

Here dn > 0 are logarithmic decrements, indicating the order

of exponential decrease of wave amplitudes un per wave-

length distances.

Due to the amplitude decay, the PSAWs were consid-

ered inappropriate for applications in acousto-electronic

devices. However, it has been shown theoretically and con-

firmed by experimental measurements4,5 that at certain film-

thickness-to-wavelength ratios h=k their leakage loss might

become so small that the PSAW, in fact, degenerates into a

SAW, propagating with practically negligible attenuation

dn � 1 (hereinafter, the unsubscripted k stands for the wave-

length kn of a specific n-th mode considered). The use of

such degenerating PSAWs seems even more attractive as

their velocities are always greater than those of SAWs (the

latter may not exceed the shear wave velocity cs in the lower

half-space, while the PSAW velocities cn ¼ x=kn range

above cs).

Theoretical and experimental investigations carried out

for a two-layer AlN/Diamond elastic half-space4,5 have

revealed two such points of degeneration h=k ¼ 0:09 and

0.15 for the first (Sezawa) PSAW mode. Besides, a three-

layer AlN/Diamond/Si structure has also been considered6 ina)Electronic mail: evg@math.kubsu.ru.
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order to determine the influence of the diamond film thick-

ness H on the PSAW velocities and losses as compared with

the two-layer half-space (H ¼ 1). The plots given there for

several fixed values h=k demonstrate an exponential

decrease in the difference between the results obtained

within the two-layer and three-layer models as the ratio H=k
increases. It allows one to estimate approximate values of

H=k, above which a two-layer AlN/Diamond model would

be appropriate for theoretical investigations instead of a

more complex three-layer model.

On the other hand, the discrepancy in the results

becomes essential as h=k and/or H/h decreases. In particular,

optimal for low-loss PSAW excitation values of h=k found

in the context of a two-layer model may vary with the H/h
variation. Moreover, in a three-layer model, the threshold

shear wave velocity cs in the lower half-space becomes

much smaller than that in the diamond. Hence, the range of

PSAW velocities stretches downward, and former real

branches of SAW dispersion curves become complex. Esti-

mation of such losses induced by the presence of a third

softer substrate is also of interest.

A theoretical study of these issues in a three-layer

framework has been also commenced in Ref. 10. Since the

metallic c-TiAl substrate offers advantages in the high

temperature range and weight reduction, the AlN/Diamond/

c-TiAl structure has been considered there, unlike to the

three-layer composition with non-metallic silicon substrate

examined in Ref. 6. The present work is a continuation

of the research,10 therefore, the structures with the same

c-TiAl substrate are considered below.

The main difference from Ref. 10 is in the mathematical

solution technique. A theoretical study of guided wave (GW)

propagation is ordinarily based on the modal analysis tech-

nique. In this way, a term of form (1) is substituted in the ho-

mogeneous governing equations and boundary conditions of

a BVP simulating wave processes without accounting for the

wave source. Then the wavenumbers kn are obtained as the

roots of the characteristic equation that follows from the ex-

istence condition for a non-trivial solution. The amplitude

vectors anðzÞ are eigensolutions (modal eigenforms) associ-

ated with the eigenvalues kn.

This approach provides exhaustive information on the

GW characteristics, except for the amplitudes an, which,

being spatial eigenforms, may only be determined to con-

stant factors. Therefore, to find specific amplitudes of the

SAWs generated by a given source, one has to couple a

modal expansion in terms (1) with a nearfield solution. The

latter may be obtained, for instance, by a finite element

method (FEM). However, as a whole, this way is rather cum-

bersome, considering additional expenses for the nearfield

solution and stitching procedures.

There exists another and more natural way of accounting

for wave sources modeled by non-zero boundary conditions

that does not require any stitching with a nearfield solution.

It is based on the Fourier transform with respect to the

horizontal coordinates x and y, leading to an explicit integral

representation for the wavefield generated by an electrome-

chanical loading vector q(x,y) set in the contact area X. That

loading arises in X when a driving voltage is applied to the

IDT electrodes. The integral representation can be derived in

terms of the convolution of the structure’s Green’s matrix

k(x), x ¼ (x,y,z), with the vector q(x,y) or, equivalently, in

the form of the inverse Fourier path integral of their Fourier

symbols’ product. The SAWs and PSAWs of forms (1) and

(2) are obtained then as the residues from the integrand’s

real and complex poles, respectively. Notably, the source in-

formation automatically enters into the amplitude factors an

via the vector q, thereby the amplitudes of generated GWs

are uniquely defined.

That mathematical technique, referred to as integral

approach, has been developed for GW propagation in 3D

M-layered anisotropic structures.12 In the present work, we

use its modification for the 2D electromechanical structure

considered, which is briefly described in Sec. II. Green’s ma-

trix plays a key role in this approach, therefore, Sec. III gives

explicit expressions required for its independent calculation,

while the results obtained for two- and three-layer structures

using the model developed are discussed in Sec. IV.

II. MATHEMATICAL FRAMEWORK

Let us consider a three-layer (M¼ 3) laminate structure

consisting of a diamond layer of thickness H deposited on a

metallic substrate and covered by a piezoelectric film of

thickness h (Fig. 1). In Cartesian coordinates x ¼ ðx; y; zÞ
� ðx1; x2; x3Þ, the structure occupies the lower half-space

�1 < x; y <1; �1 < z � 0. The layer subdomains Sm :
zmþ1 � z � zm ðm ¼ 1; 2; 3; z1 ¼ 0; z4 ¼ �1Þ are numbered

top-down. They are perfectly bonded at the interfaces

z ¼ z2 ¼ �h and z ¼ z3 ¼ �ðhþ HÞ, while the upper sur-

face z ¼ z1 ¼ 0 is stress-free everywhere except in the con-

tact area X to which an IDT is attached.

In the first piezoelectric layer S1 the complex amplitudes

of the wavefields ue�ixt and ue�ixt obey the coupled electro-

mechanical equations13

Cijkl ul;jk þ ekij u;jk þ q1x
2ui ¼ 0; i ¼ 1; 2; 3;

ejkl ul;jk � ejk u;jk ¼ 0; (3)

while in the second and third (m¼ 2, 3) isotropic non-

piezoelectric media, the governing equations

ðkm þ lmÞrdiv uþ lmDuþ qmx2u ¼ 0; (4)

Du ¼ 0 (5)

FIG. 1. Geometry of the problem.
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are uncoupled, with u � 0 in the metallic substrate S3.

In addition, Eq. (5) also holds in the upper half-space S0 : 0

� z <1 with respect to the potential u in vacuum (m¼ 0).

Quasi-electrostatic assumption is made in this analysis.

The tensor notations in Eqs. (3) and below conven-

tionally assume summation over identical indices and

space derivatives defined by a comma. The constants Cijkl;

eikl and ejk are components of the elastic stiffness, piezo-

electric and dielectric tensors of the coating piezomaterial,

respectively; km and lm are elastic Lam�e constants of the

underlying isotropic materials; qm are mass densities. To-

gether with the Lam�e constants, the body wave velocities

cp;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkm þ 2lmÞ=qm

p
and cs;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lm=qm

p
are also used

to specify isotropic materials.

Equations (3) follow from the stress equations of motion

sij;i þ qx2uj ¼ 0; j ¼ 1; 2; 3; (6)

and the charge equation

Di;i ¼ 0; (7)

after the substitution of the linear piezoelectric constitutive

relations

sij ¼ Cijkl uk;l þ ekiju;k; Di ¼ eikl uk;l � eiku;k; (8)

coupling the components of the stress tensor sij and of the

electric displacement vector D ¼ ðD1;D2;D3Þ with the dis-

placement and electric fields u and u. In isotropic materials

relations (8) are uncoupled

sij ¼ kdiv udij þ lðui;j þ uj;iÞ; Di ¼ �eu;i; (9)

where dij is the Kronecker symbol. Their substitution into

Eqs. (6) and (7) yields separate Eqs. (4) and (5).

Perfect bonding entails continuity of the electromechan-

ical fields across the interfaces, i.e., zero jumps of the corre-

sponding physical quantities

½u�m ¼ 0; ½s�m ¼ 0; ½u�m ¼ 0; ½D3�m ¼ 0;

z ¼ zm; m ¼ 2; 3; (10)

the square brackets denote jumps at the interfaces: ½f �m
¼ lime!0ðf jz¼zm�e � f jz¼zmþeÞ; s ¼ ðs13; s23; s33Þ is a stress

vector at a horizontal surface element.

There are two types of boundary conditions at the sur-

face z¼ 0 traditionally considered in SAW problems: the

open-circuited stress-free conditions

s ¼ 0; ½u�1 ¼ 0; ½D3�1 ¼ 0 at z ¼ 0; (11)

and the short-circuited ones

s ¼ 0; u ¼ 0 at z ¼ 0: (12)

In both cases, the corresponding BVPs are homogeneous

(with zero right-hand sides in all equations and boundary

conditions). The SAW modes, being their non-trivial eigen-

solutions, may only be obtained up to constant factors.

Hence, the amplitudes, and so the power, of SAWs generated

by a given IDT source cannot be determined without addi-

tional coupling with a quantitative nearfield solution. Indi-

rectly the capability of an IDT to generate a specific SAW

mode can be estimated via the electromechanical coupling

coefficient14

K2
n ¼ 2

co
n � cs

n

co
n

; (13)

where co
n and cs

n are phase velocities of the n-th mode propa-

gating over open-circuited and short-circuited surfaces,

respectively. The velocities are taken for the same fixed ratio

h=k, i.e., in general, for different frequencies.

A direct way of the IDT efficiency determination lies

through the consideration of an inhomogeneous problem

with non-zero boundary conditions emulating the source. Its

solution should yield unique values of SAW amplitudes, pro-

viding specific source power distribution among the SAWs

excited. Rigorous formulation of such a problem leads to

mixed boundary conditions at the surface z¼ 0. The open-

circuited conditions of form (11) hold outside the contact

area X, while the contact stresses s and the jump ½D3�1 are

undefined in X (½u�1 � 0 in X due to the metallization).

Instead, a displacement vector w of IDT strip contacts and a

driving electric potential p have to be assigned in X. As a

whole, it may be written as follows:

u ¼ w; u ¼ p for ðx; yÞ 2 X; z ¼ 0; (14)

s ¼ ðq1; q2; q3Þ; ½D3�1 ¼ q4 for �1 < x; y <1; z ¼ 0:

(15)

The vector-function q ¼ ðq1; q2; q3; q4ÞT is unknown in X
and q � 0 for ðx; yÞ 62 X.

However, in general, the values of w and p are also

unknown. To close the problem, governing equations for

IDT mechanical oscillation and for the electric circuit have

to be added to substructure’s equations (3)–(5). Boundary

conditions (14) and (15) couples those two groups of equa-

tions, forming a more complex BVP that accounts for the

IDT-substructure contact interaction. The vector q, which

simulates a source action upon the structure, may be

obtained from this BVP only simultaneously with other

unknown quantities. Nevertheless, it is possible to reduce the

contact problem to separate auxiliary IDT and substrate

problems based on the Green matrix concept.

Green’s matrix k(x) is introduced to give a strict quanti-

tative information about structure’s dynamic response to any

surface loading q. The columns kj ¼ ðuj;ujÞT (j¼ 1, 2, 3, 4)

of this 4� 4 matrix k ¼ ðk1�k2�k3�k4Þ are formed from the

solutions uj;uj of the substructure BVPs (3)–(5), (10) with

the surface conditions

sjz¼0 ¼ dðx; yÞij; ½D3�1 ¼ 0 for j ¼ 1; 2; 3;

sjz¼0 ¼ 0; ½D3�1 ¼ dðx; yÞ for j ¼ 4; (16)

instead of Eqs. (15). Here ij are basis vectors and dðx; yÞ is

Dirac’s delta-function; i.e., the columns kj specify the struc-

ture’s response to the concentrated loads applied at the origin
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x¼ 0 along the coordinate axis directions (j¼ 1,2,3) and

to the point jump of the normal electric displacement

component D3 ðj ¼ 4Þ. Any electromechanical wavefield

v ¼ ðu;uÞT associated with a specific loading vector q can

be represented as a convolution of k with q, or, alternatively,

via their Fourier symbols K and Q

vðxÞ ¼
ð ð

X

kðx� n; y� g; zÞqðn; gÞdndg

¼ 1

4p2

ð
C1

ð
C2

Kða1; a2; zÞQða1; a2Þe�iða1xþa2yÞda1da2:

(17)

The Fourier symbols result from the transformation F xy

over the horizontal coordinates x and y

Kða1; a2; zÞ ¼ F xy½k� �
ð ð1

�1

kðx; y; zÞeiða1xþa2yÞdxdy;

and similarly for Q ¼ F xy½q�. The last double integral in

Eq. (17) is actually the inverse transformation F�1
xy of the

Fourier-transform domain solution V¼KQ to the auxiliary

BVP (3)–(5), (10), and (15). The integration paths C1 and C2

go along the real axes, deviating from them into the complex

planes a1 and a2 for rounding real poles of the integrand

Vða1; a2; zÞ.
In the contact area X, the augmented by the electric poten-

tial displacement vector v ¼ ðu;uÞ must coincide with the

IDT boundary displacement and electric characteristics enter-

ing in contact conditions (14): vðx; y; 0Þ ¼ ðw; pÞT . Therefore,

a substitution of integral representation (17) with z¼ 0 into

these conditions leads to a closed integro-differential problem

with respect to unknown IDT characteristics and q. The differ-

ential equations of IDT motion are generally simpler than those

for the substructure z � 0, while the electromechanical

response of the latter is strictly accounted for via Green’s ma-

trix. An example of such technique implementation for flexible

piezoelectric patch actuators bonded to an elastic layer may be

found in Ref. 15. If w and p are known, e.g., from experimental

measurements, the problem is reduced to the Wiener-Hopf inte-

gral equation with respect to the only unknown q:

Kq �
ð ð

X

kðx� n; y� g;0Þqðn;gÞdndg ¼ fðx; yÞ ðx; yÞ 2 X;

f ¼ vðx; y; 0Þ ¼ ðw;pÞT : (18)

As soon as q is determined, only Eq. (17) is enough for

a quantitative wave analysis in the structure. Since the pres-

ent work is focused on SAW/PSAW characteristics, which

do not dependent on source parameters, a self-dependent

problem of IDT modeling is out of its scope. We assume that

q is prescribed, using a point-source IDT model in the nu-

merical examples below. Nevertheless, even with such a

simple source, the mathematical model developed yields a

worthwhile information about the source energy distribution

among the excited GWs.

A closed representation for cylindrical GWs generated

by the load q can be derived from Eq. (17) in terms of resi-

dues and Hankel functions in the same way as it was accom-

plished in Ref. 12. That asymptotic representation allows

one to analyze GW radiation in any directions. With a comb

IDT under consideration, a plane wave propagation in the

direction orthogonal to the comb contacts is of prime con-

cern. Hence, a 2D statement with respect to the y-independ-

ent in-plane oscillation v(x, z) may be considered instead of

the full 3D statement above.

In the 2D framework, only the Fourier transform F x

with respect to x is applied and the wavefield v is described

by the single path integral

vðx; zÞ ¼ 1

2p

ð
C

Kða; zÞQðaÞe�iaxda: (19)

The matrix K here is a special case of that in Eq. (17)

with a ¼ a1, and a2 ¼ 0 and Q ¼ F x½qðxÞ�. In accordance

with the residue technique, the integration contour C (Fig. 2)

can be closed upward or downward for x < �a and x > a,

respectively (a is the half-width of the contact domain

X: jxj < a). It brings Eq. (19) to the sum of residues from the

poles 6fn of K elements plus the remaining integrals over

the banks of the vertical cuts C6
j , j¼ 1,2, drawn in the com-

plex a-plane from the branch points 6jj to infinity (Fig. 2):

vðx; zÞ ¼
X1
n¼1

vnðzÞ þ
1

2p

X2

j¼1

ð
C6

j

Vða; zÞe�iaxda; (20)

vn¼ðun;unÞT ¼ aneifnjxj; anðzÞ¼7resKða;zÞja¼7fn
Qð7fnÞ;

the upper and lower signs are for x > a and x < �a, respec-

tively. The cuts assure the unique analytical continuation

from the real axis onto the single-valued surface sheet of the

Riemann manifold induced by the branch points 6jj. These

cuts exclude the sheets which points a yield unphysical wave

phenomena (so-called unphysical sheets), selecting the one

that provides physically appropriate wave parameters (a

physical sheet). The poles fn are located in the upper half-

plane Im a � 0 above C and arranged in order of increasing

imaginary parts, i.e., Im fnþ1 � Im fn. The centrally symmet-

ric to fn poles �fn lie beneath C. A limited number of the

first poles fn, n¼ 1,2,…, N, are real. They are located on the

FIG. 2. Integration contour C, branch points 6jj, cuts C6
j and poles 6fn in

the complex plane a. The star symbols schematically show possible location

of real (SAW) and complex (PSAW) poles fn on the right and left of j2,

respectively.
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right of the branch point j2. The corresponding terms un in

sum (20) are undamped SAWs, while complex fn, located

not far from the real axis on the left of the cut Cþ2 , yield

PSAWs propagating with the exponential attenuation

e�Im fnjxj as jxj ! 1. Their number is also limited, while the

rest of the infinite set of fn are featured by large, rapidly

growing with n, imaginary parts.

The phase velocities, wave lengths and logarithmic dec-

rements of the GW modes vn are

cn ¼ x=Re fn; kn ¼ 2p=Re fn and dn ¼ 2pIm fn=Re fn:

(21)

The branch points j1 ¼ x=cp and j2 ¼ x=cs are specified

by the velocities of P and S (longitudinal and transverse) body

waves propagating in the lower half-space SM (cp ¼ cp;M;
cs ¼ cs;M, M¼ 2 or 3 in a two- or three-layer model, respec-

tively). Accordingly, the integrals over the branch cuts C6
j

yield body waves.

The dependence of GW amplitudes on the depth z is

specified by the vector-functions anðzÞ. Up to constant fac-

tors they coincide with modal eigenforms obtained using

conventional modal analysis technique, e.g., by the matrix

method.16 Unlike the eigensolutions, the amplitude functions

an are controlled by the source factors Qð7fnÞ that uniquely

fix their values, while the structure determines the GW

shapes via the matrix K. The algorithm of its calculation is

briefly described in Sec. III.

III. GREEN’S MATRIX

Fourier-transformed Eqs. (3) can be compactly written

in the form

Cijklajak Ul þ ekijajakU� qx2Ui ¼ 0; i ¼ 1; 2; 3;

eiklaiak Ul � eikaiakU ¼ 0: (22)

The multiplier �ia3 is treated here as an operator nota-

tion for the derivative @=@z in accordance with the property

F x½@
nv
@xn

j
� ¼ ð�iajÞnVðaÞ, a ¼ ða1; a2; a3Þ; VðaÞ ¼ F x½v� is the

transformation with respect to all spatial variables x1; x2; x3.

Similarly, Eqs. (9) for the stress and electric displacement

components take the following forms in the Fourier-

transform domain

Ti3 ¼ �iakCi3jkUj � iakeki3U; D3 ¼ �iake3kjUj þ iake3kU:

(23)

In this way, the transformed BVP can be written in the

matrix form

½Bða; zÞ � qx2I3�Vða1; a2; zÞ ¼ 0; (24)

T1ðaÞVða1; a2; zÞjz¼0 ¼ Qða1; a2Þ; (25)

½V�m ¼ 0; ½TV�m ¼ 0; m ¼ 2; 3; (26)

where I3 ¼ diag ð1; 1; 1; 0Þ,

B ¼ ½bij�4i;j¼1 ¼
Bs Bse

Bes Be

� �
; (27)

Bs : bij ¼ Ciljkakal; i; j ¼ 1; 2; 3;

Bse : bi4 ¼ ekijajak; i ¼ 1; 2; 3;

Bes : b4j ¼ eikjaiak; j ¼ 1; 2; 3;

Be : b44 ¼ �eikaiak;

and

T ¼ ½Tij�4i;j¼1 ¼
Ts Tse

Tes Te

� �
(28)

Ts : Tij ¼ �iakCi3jk; i; j ¼ 1; 2; 3;

Tse : Ti4 ¼ �iakeki3; i ¼ 1; 2; 3;

Tes : T4j ¼ �iake3kj; j ¼ 1; 2; 3;

Te : T44 ¼ iake3k:

The matrix T1 in Eq. (25) is of the form (28) but

with the additional term �e0a in the T44 component, e0

¼ 8:85419 F=m is the vacuum dielectric constant and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2

p
. This term appears because the boundary

condition (15) involves the jump ½D3�1 between the D3

values in the piezoelectric coating S1 and in the vacuum

domain S0. In the isotropic domains S2 and S3, the matri-

ces B and T are block-diagonal ones with zero off-

diagonal solid-electric and electric-solid blocks: Bse ¼ Tse

¼ 0 and Bes ¼ Tes ¼ 0.

Non-trivial solutions to the ordinary differential equa-

tions (24) are sought for in the form V ¼ pecz. Its substitu-

tion into Eq. (24) leads to the matrix eigenvalue problem

½BðaÞ � qx2I3� p ¼ 0; (29)

in which a3 ¼ ic. The characteristic equation

det ½Bða1; a2; icÞ � qx2I3� ¼ 0 (30)

has 8 roots ck which may be divided into two groups: cj ¼ rj

and cjþ4 ¼ �rj (j¼ 1, 2, 3, 4) arranged as follows:

Re r4 > Re r1 > Re r2 � Re r3 � 0 and

Im r3 � Im r2 � Im r1 � Im r4 � 0 for real a1; a2:

In the special case of isotropic materials, i.e., for subdo-

mains S2 and S3, the roots are rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � j2

j

q
, j¼ 1, 2, 3,

where a2 ¼ a2
1 þ a2

2, j1 and j2 � j3 are wave numbers of

longitudinal and transversal body waves in the elastic materi-

als, while r4 ¼
ffiffiffiffiffi
a2
p

is associated with the uncoupled Eq. (5)

for the electric potential u. Such root regulation is significant

for the rejection of unphysical terms with the exponentials

e�rjz not meeting the attenuation and radiation conditions in

the lower half-space S3. In the upper layers S1 and S2, the

root ordering is also used. It allows one to avoid numerical

instabilities caused by growing exponentials by taking gen-

eral solutions for these layers in the form

V�Vm ¼
X4

j¼1

½tðjÞm pje
rjðz�zmÞ þ tð4þjÞ

m p4þje
�rjðz�zmþ1Þ�;

z 2 Sm; m¼ 1;2; (31)
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where pk are eigenvectors (non-trivial solutions to Eq. (29))

associated with the roots 6rj, and tðkÞm are unknown

coefficients.

In the lower half-space

V3 ¼
X3

j¼1

t
ðjÞ
3 pje

rjðz�z3Þ; z 2 S3: (32)

Here t
ð4þjÞ
3 ¼ 0 due to the radiation conditions, and in addition

t
ð4Þ
3 ¼ t

ð8Þ
3 ¼ 0 since u � 0 in the metallic substrate S3.

The unknown coefficients tðjÞm assembled into the column

vector t ¼ ðt1; t2; t3ÞT of length 19 (tm ¼ ðtð1Þm ;…; tð8Þm Þ,
m¼ 1, 2 and t3 ¼ ðtð1Þ3 ; t

ð2Þ
3 ; t

ð3Þ
3 Þ) are obtained from the sys-

tem of linear algebraic equations

A t ¼ f; f ¼ ðQ; 0;…; 0ÞT ; (33)

which follows from the substitution of expressions (31) and

(32) into the boundary conditions (25) and (26).

Since the Green matrix k(x) is constructed from the solu-

tions v ¼ kjðxÞ corresponding to point sources (16), the col-

umns Kj of the matrix Kða1; a2; zÞ have the same forms (31)

and (32) as the vector Vða1; a2; zÞ but with the coefficients

tðjÞm found from the system (33) for the four right-hand side

vectors f ¼ ðej; 0;…; 0ÞT , where ej ¼ ðd1j; d2j; d3j; d4jÞ;
j ¼ 1;…; 4.

IV. RESULTS AND DISCUSSION

A. Material parameters

For the sake of results’ comparability, a two-layer

AlN/Diamond structure (M¼ 2, H ¼ 1) with the same ma-

terial parameters as in Refs. 4, 5, and 8 has been considered

at first. In both cases M¼ 2 and M¼ 3, the GW expansion

is obtained in terms of sum (20). The only difference is in

the matrix K representation. In the case M¼ 2, the general

solution V2 in the diamond half-space S2 is of form (32)

with the unknown vector t2 ¼ ðtð1Þ2 ; t
ð2Þ
2 ; t

ð3Þ
2 Þ, so that the sys-

tem (33) becomes of the size 11� 11 (t ¼ ðt1; t2ÞT ; t1 is as

above).

In the case M¼ 3, the properties of the additional metal-

lic half-space S3 have been taken for a c-TiAl alloy, the

same as in Ref. 10. The material constants used in the nu-

merical examples below are given in Table I. The piezocoat-

ing AlN is transversally isotropic, its elastic properties are

specified by five elastic constants, while the remaining

non-zero constants C22 ¼ C11; C23 ¼ C13 and C66 ¼ 1
2
ðC11

�C12Þ are not independent. The constants Cijkl and eijk are

compactly expressed here as two-index elements Cab and eic

in accordance with Voigt’s convention

ij or kl or jk : 11 22 33 23 13 12

a or b or c : 1 2 3 4 5 6
:

The anisotropy results in different velocities of body

wave propagation in the horizontal direction (cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=q

p
¼ 10 287 m=s; cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
¼ 6 016 m=s) and along

the Oz axis (cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C33=q

p
¼ 11 008 m=s; cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C66=q

p
¼ 5 809 m=s). The body wave velocities of the isotropic

materials are

cp;2 ¼ 18 120 m=s; cs;2 ¼ 12 320 m=s for Diamond

cp;3 ¼ 7 546 m=s; cs;3 ¼ 4 035 m=s for c-TiAl:

It is pertinent to note once again that the threshold ve-

locity cs ¼ cs;M, separating SAW and PSAW ranges of GW

velocities cn, considerably differs for the cases M¼ 2

(cs ¼ 12 320 m=s) and M¼ 3 (cs ¼ 4 035 m=s). Besides, an

additional variable geometrical parameter H appears in the

case M¼ 3. To demonstrate the influence of the diamond-to-

piezoelectric layer-thickness ratio H/h on the effects revealed

in the context of the two-layer model, the results for three-

layer structures with the high, medium and small ratios

H/h¼ 10, 5 and 2 are discussed in Sec. IV C.

B. Two-layer AlN/Diamond structure

Whereas the phase velocities cn and the coupling coeffi-

cients K2
n of several first SAW modes have been already well

studied (e.g., Ref. 8), only the complex branch of the second

(Sezawa) mode has been examined in detail in order to

reveal the effect of PSAW-to-SAW degeneration (i.e., to

find h=k for which dn becomes very small).4,5 Notice that we

number the modes starting from n¼ 1, in accordance with

the pole numbering in Eq. (20), unlike the frequently used

numbering starting from n¼ 0.

The dispersion curves of the first ten GW modes propa-

gating in the AlN/Diamond structure in the frequency range

0 < h=k < 2 are shown in Fig. 3. All the velocities smoothly

decrease as h=k increases. The first curve c1 is for the

fundamental Rayleigh mode. It starts from the value cR

¼ 10 920 m=s at h=k ¼ 0 and tends to cR ¼ 5 608 m=s as

h=k!1. These values coincide with the velocities cR of

the classical Rayleigh wave in the homogeneous half-

spaces with the diamond and AlN properties, respectively.

This curve is entirely situated in the SAW zone (c1 < cs),

while the velocities cn of all other SAW modes reach the

threshold level cs ¼ 12:32 km=s at certain values of h=k
if tracing them from right to left. Then the corresponding

poles fn pass through the branch point j2 and come out

from the real axis into the complex a-plane. The even

ones get on the physical Riemann surface sheet, while the

TABLE I. Material parameters.

C11 (GPa) C12 C13 C33 C44 e15 (C=m2) e31 e33 e11 (pF/m) e33 q (kg=m3)

AlN 345 125 120 395 118 �0.48 �0.58 1.55 80 95 3260

Diamond 1153 533 55 55 3512

c-TiAl 222.1 63.5 3900
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odd ones go off onto the unphysical sheet ceasing contri-

bution into GW expansion (20). Therefore, in the figure

they are not drawn above cs. The real sections of the

curves shown in Fig. 3 coincide with the known plots of

higher SAW modes, e.g., with the curves of the first five

modes presented in Refs. 8 and 10.

The top and bottom subplots of Fig. 4 depict coupling

coefficients K2
n versus h=k for all the ten modes of Fig. 3 (both

for SAW and PSAW parts). The parts of the first five ones

corresponding to real cn (Fig. 4, top) also coincide with the

SAW coupling coefficients presented in Ref. 8. Since the cou-

pling coefficients denote structure’s ability to produce various

GWs in response to an applied voltage, it is interesting to com-

pare them with plots of the GW amplitudes an in expression

(20) obtained for a prescribed source vector q. Figure 5 dis-

plays the relative amplitude factors An ¼ jânj=d ðlm 	 m=CÞ
for the GWs generated by the point electric source

q ¼ ð0; 0; 0; q4ÞT ; q4 ¼ ddðxÞ (vectors ân are composed of

the first three an components without the forth ones for u).

With d¼ 1 C/m, the displacement vector u of the wavefield

caused by this source is, in fact, the displacement part of the

forth column k4 of Green’s matrix kðxÞ. As it might be

expected, the amplitude patterns of Fig. 5 are very similar to

those for K2
n in Fig. 4, at that the use of Eq. (20) for the GW

power estimation seems to be more advantageous. First, it does

not require to derive and calculate one more solution for the

auxiliary short-circuited problem and, second, it automatically

yields the source energy partition among the excited GWs.

The loss decrements dn associated with the complex sec-

tions of the first five even modes (n¼ 2,4,…,10) are shown

in Fig. 6. The first PSAW (Sezawa mode, n¼ 2) has the

smallest decrement d2. Its pattern and value coincide with

those obtained in Refs. 4 and 5, exhibiting the same twoFIG. 4. Coupling coefficients K2
n for the GW modes shown in Fig. 3.

FIG. 5. Amplitude factors An of the same GWs as in Fig. 3 generated by the

point electric source ½D3�1 ¼ ddðxÞ; h ¼ 4:3 lm.

FIG. 3. SAW (cn < cs;2) and PSAW (cn > cs;2) phase velocities cn in the

AlN/Diamond structure (H ¼ 1).
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points of zero minima h=k ¼ 0:09 and 0.15. The bottom

zoomed-in subplot of Fig. 6 demonstrates the presence of

similar points of dn minima for the higher modes as well.

The phase velocities cn for these values h=k are above the

SAW velocities. All such points revealed for the modes con-

sidered and the corresponding values cn; K2
n and An are col-

lected in Table II.

C. Three-layer model

As noted above, the two- and three-layer models are

substantially different in the values of the threshold velocity

cs. It implies that all former real (SAW) branches shown in

Fig. 3 become formally complex in the AlN/Diamond/c-TiAl

three-layer model. Nevertheless, with a sufficiently large ra-

tio H/h, the pattern of former real dispersion curves remains

practically the same as in the M¼ 2 case (compare Figs. 3

and 7 for H/h¼ 10). The losses dn of these former SAWs are

also negligible.

The only exception is in the low-frequency range in which

the wavelength k becomes larger than the diamond layer thick-

ness H. The influence of the underlying metallic half-space

increases and becomes decisive as h=k! 0. It appears in the

down turn of the first (Rayleigh) branch in Fig. 7. Now, it

tends to the Rayleigh wave velocity cR ¼ 5 608 m=s of the

c-TiAl half-space instead of cR ¼ 10 920 m=s in the M¼ 2

case. Other complex poles fn go up in the complex plane as

h=k! 0 and the corresponding loss decrements dn rapidly

grow. The terms un in Eq. (20) associated with such poles

FIG. 6. Loss decrements dn for the first five PSAWs in AlN/Diamond struc-

ture (top), the bottom zoomed-in subplot demonstrates the presence of dn min-

ima points (indicated by arrows) at which the PSAWs propagate as SAWs.

TABLE II. Points of PSAW-to-SAW degeneration (M¼ 2).

h=k n cn (km/s) K2
n (%) An ðlm 	m=CÞ

0.090 2 15.96 0.022 1.37

0.153 2 13.34 0.212 5.72

0.553 4 13.37 0.240 6.87

0.573 6 17.80 0.148 1.45

0.882 8 16.73 0.002 0.27

1.401 8 12.79 0.075 1.60

1.460 10 14.64 0.117 3.03

FIG. 7. PSAW dispersion curves for the three-layer structure with a rela-

tively thick diamond interlayer: H/h¼ 10.

FIG. 8. The same as in Fig. 7 but for sublayers of thickness ratio H/h¼ 5.

FIG. 9. The same as in Figs. 7 and 8 but for sublayers of comparable thick-

nesses: H/h¼ 2.
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could hardly be treated as guided waves. Therefore, the tracing

of dispersion curves in Figs. 7–9 is stopped when their imagi-

nary parts transcend certain large level in the course of h=k
decreasing.

With a smaller H/h ratio, the range of such substrate

influence enlarges, appearing in a visible shape deformation

of several next branches in addition to the first one (see

Figs. 8 and 9 for H/h¼ 5 and 2, respectively). Based on

Fig. 9, one can conclude that the range of visible difference

is at least 0 < h=k < 0:5 for H/h¼ 2. In terms of H, it corre-

sponds to the range 0 < H=k < 1. In other words, it confirms

the assumption that the difference becomes noticeable when

the wavelength k is greater than H.

Thus, the values h=k ¼ 0:09 and 0.15, being optimal for

Sezawa wave generation in the AlN/Diamond structure,

may essentially change if the underlying substrate is

taken into account. Indeed, Fig. 10 depicting d2 plots for

H=h ¼ 1; 10; 5 and 2 demonstrates such a change. One can

see that the point h=k ¼ 0:09 cease to be optimal in the

three-layer case, while the optimal point h=k ¼ 0:15 is much

more stable. It gradually shifts, however, to the right as H/h
decreases and reaches the value h=k ¼ 0:2 when H/h¼ 2.

One more consequence of the branch point change is

that all the poles, being now complex, lie on the physical sur-

face sheet. In particular, now the odd ones also continuously

pass the former branch point level cs;2 ¼ 12 320 m=s keeping

their contribution into GW expansion (20). Here, whereas

the pattern of the former SAWs does not visibly vary for

H=k > 1, the shape of PSAW curves above cs;2 drastically

depends on the H/h ratio. The larger H/h is, the closer those

curves nestle to the cs;2 level just after its crossing as h=k
decreases. In addition, they exhibit sharp skew-step windings

along the former PSAW trajectories that were actual in the

M¼ 2 case. Such pseudo-curves formed from the skew-step

windings are well visible in Fig. 7 for the former 4th, 6th

and, in part, 8th and 10th PSAW modes. The latter has

appeared just in part because only the first 17 modes are pre-

sented in Fig. 7, while a lot of PSAW curves that would fill

in the blank domain between the cs;2 and cp;2 levels are not

shown there.

Meanwhile, the regularity of the step-like patterns is

depicted by the zoomed-in subplots of Fig. 11. The loss dec-

rement curves also exhibit a series of downward excursions

in those ranges, which are more and more regular for higher

modes (Fig. 12). Not all of those dn depressions reach down

to the bottom zero level. However, as in the M¼ 2 case,

there also exist values of h=k at which dn of certain PSAWs

with phase velocities cn > cs;2 are small enough for treating

them as SAWs. Some of such points are shown in Table III.

It is noteworthy that the resonance nature of such points

manifests itself not only in essential decreasing of the leak-

age loss but also in a sharp amplitude growth. The plots of

FIG. 10. Sezawa mode attenuation in different structures illustrating the

change of optimal h=k values with H/h variation.

FIG. 11. Zoomed-in parts of dispersion curves in

the case H/h¼ 10 (Fig. 7) illustrating skew-step

windings along the former PSAW trajectories.
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the GW amplitudes junj versus h=k are featured by narrow

peaks rising up at these points.

V. CONCLUSIONS

The integral equation based mathematical model for sur-

face and pseudo-surface wave excitation and propagation in

a high-velocity (diamond) isotropic layer covered by a piezo-

electric film has been developed and implemented. In addi-

tion to wave characteristics provided by conventional modal

expansions, the model strictly accounts for the wave source

yielding specific SAW/PSAW amplitudes. The input mate-

rial parameters may be quite general, thus the model is suita-

ble for a wide range of layered piezo-electromechanical

structures. The PSAW modes in the AlN/Diamond/c-TiAl

structure have been analyzed to clear up a possibility of their

potential applications in high frequency SAW devices.
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FIG. 12. Sharp loss decrement depressions at the

skew-step sections shown in Fig. 11.

064911-10 Glushkov, Glushkova, and Zhang J. Appl. Phys. 112, 064911 (2012)

http://dx.doi.org/10.1016/j.diamond.2005.07.031
http://dx.doi.org/10.1109/TUFFC.2005.1561635
http://dx.doi.org/10.1109/TUFFC.2005.1561635
http://dx.doi.org/10.1063/1.1999841
http://dx.doi.org/10.1063/1.2739218
http://dx.doi.org/10.1063/1.2986215
http://dx.doi.org/10.1063/1.3074370
http://dx.doi.org/10.1063/1.1754825
http://dx.doi.org/10.1121/1.3559699
http://dx.doi.org/10.1016/0041-624X(70)90793-6
http://dx.doi.org/10.1063/1.1658060
http://dx.doi.org/10.1088/0964-1726/16/3/012
http://dx.doi.org/10.1088/0964-1726/16/3/012
http://dx.doi.org/10.1109/58.330269

