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Elastodynamic response of anisotropic laminate composite structures subjected to a force loading is

evaluated based on the integral representations in terms of Green’s matrices. Explicit and asymp-

totic expressions for guided waves generated by a given source are then obtained from those inte-

grals by means of series expansions and the residue technique. Unlike to conventional modal

expansions, such representations keep information about the source, giving an opportunity for a

quantitative near- and far-field analysis of generated waves. An effective computer implementation

is achieved by the use of fast and stable algorithms for the Green matrix, pole, and residue calcula-

tions. The potential of the model is demonstrated by examples of anisotropy manifestation in the

directivity of radiated waves. The effect of main energy outflow in the direction of either upper- or

inner-ply orientation depending on the source size and frequency is discussed.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3559699]
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I. INTRODUCTION

Elastic guided waves (GWs) propagating in layered

materials have been actively studied in applications such as

seismology, ultrasonic inspection, material characterization,

electromechanical devices, etc. Mathematical simulation of

wave phenomena in laminate structures relies on the transfer

matrix approach going back to the pioneering works by

Thomson,1 Haskell,2 and Petrashen3 in the 1950s. Subse-

quently, this approach has also been generalized for aniso-

tropic laminates4–6 and a number of results in this field have

been reported.

There are two main directions for the use of transfer ma-

trix algorithms: (1) in the context of modal analysis and (2)

for Green’s matrix calculation. In the first, the phase and

group velocities, spatial eigenforms and dispersion charac-

teristics of GWs are obtained from a homogeneous boundary

value problem (BVP) without accounting for the wave

source. With a wave source modeled by a surface load, i.e.,

by inhomogeneous boundary conditions, the generated wave

field may be represented via the convolution of a Green’s

matrix for the laminate composite structure with a source

function. In addition to the capabilities provided by modal

analysis, a second way, referred to as integral approach,

allows one to carry out quantitative amplitude and energy

analysis of the GWs excited by a specific source.

The present paper examines the influence of anisotropy

and lamination on forced wave energy radiation and its spatial

directivity and modal partitioning based on the integral

approach. In this context, the solution to the corresponding

BVP derived in the form of inverse Fourier path integrals is

reduced to explicit series expansions in terms of GWs

expressed via one-dimensional integrals over the polar angular

variable. Finally, asymptotic representations convenient for a

far-field analysis are derived from those integrals. The expan-

sion coefficients of these representations contain all required

information about the source. In that way, the coupling proce-

dures commonly required for hybrid schemes7 are not needed.

We have chosen Refs. 8–11 as principal references from

the variety of literature devoted to wave propagation in ani-

sotropic plates. They are close analogs with regard to the

objectives and/or the mathematical techniques used here.

Reference 8 presents angular and dispersion characteristics

of Lamb waves in laminate composites obtained using the

modal analysis technique, while Ref. 9 contains examples of

forced (laser-generated) GW energy behavior. We used

those results for numerical testing and validation of our com-

puter programs. References 10 and 11 deal with the integral

equation based computer simulation of three-dimensional

(3D) forced wave excitation in generally anisotropic com-

posite plates. As a distinction, only through-plate transmitted

waves are considered10 (no GWs), while a far-field asymp-

totic solution to the 3D problem is derived in terms of modal

solutions to the related two-dimensional (2D) problem,11

unlike the direct derivation from the double-integral repre-

sentation accomplished in the present paper.

The paper is organized as follows. After the mathemati-

cal formulation of the BVP, a general form of the integral

representation in terms of Green’s matrix is introduced in

Sec. III. This representation is a starting point for the deriva-

tion of series expansions and far-field GW asymptotics given

in Sec. IV. Those formulas, being a low-cost tool for the

analysis of forced GWs, become practically useful with an

efficient algorithm for Green’s matrix calculation, which is

described in Sec. V. The methods of searching for the real

and complex roots of the GW characteristic equations, as

well as the methods of residue calculation, are generally the

same for both isotropic and anisotropic waveguides. There-

fore, we skip their description and pass to numerical exam-

ples in Sec. VI, where we focus on the manifestation of

anisotropy in the directivity of the GWs.
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II. PROBLEM STATEMENT

Consider a laminate structure subjected to dynamic

time-harmonic loading qðx; yÞe�ixt applied to a finite area X
on its top surface (Fig. 1). In Cartesian coordinates

x ¼ ðx; y; zÞ � ðx1; x2; x3Þ, the structure occupies the domain

D : jxj <1; jyj <1;�H � z � 0. It is fabricated from

elastic anisotropic sublayers

Dm : jxj <1; jyj <1; zmþ1 � z � zm;

m ¼ 1; 2; … ;M;

z1¼ 0, zMþ 1¼ – H, D ¼ [M
m¼1Dm (Fig. 1 bottom). The

thicknesses of sublayers are hm¼ zm – zmþ 1, while the struc-

ture as a whole has thickness H ¼
PM

m¼1 hm. The loading

causes the elastodynamic response of the structure

uðx;xÞe�ixt. Below the harmonic factor e�ixt is convention-

ally omitted and the calculations are carried out with respect

to the complex amplitudes of the corresponding values.

Transient wave fields u(x, t) generated by non-harmonic

loads can be obtained via the frequency spectrum uðx;xÞ
using fast Fourier transform (FFT) integration in the fre-

quency domain.

The complex amplitudes of the displacement vector u

and of the stress and strain tensors rij and eij obey the consti-

tutive relations of linear elasticity

rij;j þ qx2ui ¼ 0; i ¼ 1; 2; 3; (1)

rij ¼ Cijklekl; i; j ¼ 1; 2; 3; (2)

ekl ¼ ðuk;l þ ul;kÞ=2; k; l ¼ 1; 2; 3: (3)

The substitution of Eqs. (2) and (3) into Eq. (1) yields the

elastodynamic equations

Cijklul;jk þ qx2ui ¼ 0; i ¼ 1; 2; 3: (4)

The elastic stiffness tensor Cijkl and the density q are

piecewise constant functions of the transverse coordinate

z, thereby keeping constant values within sublayers Dm.

Hereinafter, classical notations in terms of x, y, z compo-

nents are used together with the tensor ones. The latter

assumes summation over identical indices and space deriva-

tives defined by comma, e.g., rij;j ¼
P3

j¼1 @rij=@xj. Column

vectors are distinguished from row vectors by braces

u ¼ fu1; u2; u3g ¼ ðu1; u2; u3ÞT :

The outer sides of the laminate structure z¼ 0 and z¼ – H
are stress-free except within the loading region X:

sjz¼0 ¼ q
�

qðx; yÞ � 0 for ðx; yÞ 62 X
�

sjz¼�H ¼ 0; (5)

and the sublayers are perfectly bonded with each other

½u�m ¼ 0; ½s�m ¼ 0; m ¼ 2; 3;…;M: (6)

Here, s ¼ fsxz; syz; rzg ¼ fr13; r23; r33g is a traction vector

at a horizontal surface area z¼ const. By the brackets [� � �] m,

we denote a jump of a vector-function on the mth interface

z¼ zm

½u�m ¼ lim
e!0
ðujz¼zm�e � ujz¼zmþeÞ:

The technique described below can be easily modified for

other types of boundary conditions, e.g., for imperfect inter-

face bonding described by the spring boundary conditions

sjz¼zm
¼ Bm½u�m; ½s�m ¼ 0 instead of Eq. (6). The structure

may have a clamped bottom (uz¼�H ¼ 0) or it may be a lay-

ered half-space (H ¼ 1) with a radiation condition as

z!�1. For definiteness, the general scheme of the method

is depicted by the way of problem (4)–(6) for a stress-free

composite laminate plate. This problem is typical for GW-

based structural health monitoring (SHM).

For the numerical examples below, we have selected

two laminate samples A and B of the same total thickness

H¼ 3 mm but consisting of M¼ 4 and M¼ 8 sublayers Dm

of thickness hm¼H/M. The stacking sequences are

A: ½45�;�45�;�45�; 45�� and

B: ½45�; 0�;�45�; 90�; 45�; 0�;�45�; 90��:

Sample A is symmetric with respect to the middle plane

z¼ –H/2, while laminate B is non-symmetric. The ply mate-

rial characteristics (AS4/3502 graphite/epoxy) are the same

as in Ref. 8

C11 C12 C13 C22 C23 C33 C44 C55 C66 q
130:7 5:2 5:2 13:0 4:5 13:0 13:7 6:0 6:0 1578

(7)

Cab are in gigapascals (1 GPa¼ 109 N/m2), q is in kilogram

per cubic meter. The stiffness constants Cijkl are expressed

via Cab in accordance with Voigt’s convention

ij or kl : 11 22 33 23 13 12

a or b : 1 2 3 4 5 6

The constants (7) are given for the coordinate system x0

that coincides with the principal material axes. In specific

sublayers Dm they do not necessarily coincide with the axesFIG. 1. (Color online) Geometry of the problem.
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of the global coordinate system x. Therefore, the values Cijkl

entering into governing Eqs. (2) and (4) must be recalculated

for every Dm using the 6� 6 transformation matrix12 or just

the transform relation

Cijkl ¼ pmipnjprkpslC
0
mnrs

where the constants C0mnrs are for the system x0 and pij are

components of the orthogonal rotation matrix P : x ¼ Px0.
Sample A is the same as specimen I in Ref. 8. The same

way as in Ref. 8, we fix dimensionless parameters by taking

H as a unit of length, q as a unit of density, and the trans-

verse wave velocity cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l12=q

p
¼ 1945 m/s as a unit of

velocity. Then, the dimensionless angular frequency

x ¼ 2pfH=cT , where f is dimensional frequency, and the

spatial dimensionless variables are hm :¼ hm=H, r :¼ r=H,

x :¼ x=H, u :¼ u=H and so on. All the results below are

given in dimensionless form and the use of the same notations

as for the related physical quantities should not be confusing.

As for the wave sources, we confine ourselves to the

simplest vertical point load (PL) and to a ring delta-like dis-

tribution of surface radial tension (RT)

PL: q ¼ dðx; yÞi3 and

RT: q ¼ fsrz cos u; srz sin u; 0g; srzjz¼0

¼ drðr � aÞ;
(8)

where u is a polar angle in the Oxy plane.

The PL simulates a concentrated normal impact on the

surface z¼ 0 (e.g., by a laser beam), while the RT models

the action of a circular patch piezo-actuator bonded to

the surface in a low frequency range.13 Such a flexible

piezo-patch is designed to stretch and contract in the radial

direction generating radial shear contact tension, which is

concentrated at the patch border r¼ a. In Eq. (8), such con-

centrated tension is approximated by the ring delta-function

dr possessing the property

2p
ð1

0

f ðrÞdrðr � aÞrdr ¼ f ðaÞ:

III. INTEGRAL REPRESENTATION

In the general case, the load q applied to the sur-

face may be of different nature. It may describe the dis-

tribution of contact stresses under an interacting body

(indentor, transducer, piezo-patch actuator, and so on) or

simulate the effect of laser-generated thermal stresses.

For specified q, the numerical evaluation is carried out

based on the representation of u via the convolution of

the Green’s matrix kðx;xÞ for the structure with the

vector-function q:

u ¼ k 	 q ¼
ð ð

X

kðx� n; y� g; zÞqðn; gÞdndg: (9)

The frequency-domain Green’s matrix k ¼ ðk1
..
.
k2

..

.
k3Þ

is formed from the solution vectors kj corresponding to con-

centrated PLs applied along the basic coordinate vectors ij,

j¼ 1, 2, 3. Specifically, in the case under consideration, the

columns kj are the solutions u of problem (4)–(6) with the

surface boundary conditions sjz¼0 ¼ ijdðx; yÞ, j¼ 1, 2, 3,

respectively. dðx; yÞ is Dirac’s delta-function.

Representation (9) may be converted into the Fourier

transform domain and rewritten in terms of Fourier symbols.

The forward and inverse Fourier transforms F xy and F�1
xy

over horizontal coordinates x and y are used in the form

F xy½u� ¼
ð1
�1

ð1
�1

uðx; y; zÞeiða1xþa2yÞdxdy ¼ Uða1; a2; zÞ;

F�1
xy ½U� ¼

1

ð2pÞ2
ð

C1

ð
C2

Uða1; a2; zÞe�iða1xþa2yÞda1da2

¼ uðx; y; zÞ:

(10)

The integration paths C1 and C2 go along the real axes, devi-

ating from them into the complex planes a1 and a2 for round-

ing real poles of the integrand Uða1; a2; zÞ. The direction of

deviation is taken in accordance with the principle of

limiting absorption.14 The contours bypass the poles

from the sides opposite to the directions of their shifting off

from the real axes when a small attenuating force �iexu,

e << 1 proportional to the amplitude of the velocity @=@t
½ue�ixt� ¼ �ixue�ixt is introduced into governing equations (4).

In that way

uðxÞ¼ 1

ð2pÞ2
ð

C1

ð
C2

Kða1;a2;zÞQða1;a2Þe�iða1xþa2yÞda1da2;

(11)

where K ¼ F xy½k� and Q ¼ F xy½q� are Fourier symbols

(transforms) of Green’s matrix k(x) and of the load q (x, y),

respectively. A particular form of matrix K (and so of

kðxÞ ¼ F�1
xy ½K�) depends on the specific properties of the

structure. The forms of Q for sources (8) are

PL: Q ¼ i3 and

RT: Qða; cÞ ¼ fi cos cJ1ðaaÞ; i sin cJ1ðaaÞ; 0g (12);

where J1 is the Bessel function.

If the space variables x and the Fourier parameters

a ¼ ða1; a2; a3Þ are taken in the cylindrical coordinates

ðr;u; zÞ and ða; c; a3Þ

a1 ¼ a cos c

a2 ¼ a sin c

a3 ¼ a3

;

x ¼ r cos u

y ¼ r sin u

z ¼ z

;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2

p
0 � c;u � 2p

; (13)

then the integral representation (11) takes the form

uðxÞ ¼ 1

ð2pÞ2
ð

Cþ

ð2p

0

Kða; c; zÞQða; cÞ

� e�iar cosðc�uÞdc ada; (14)

where Cþ is an integration contour, going in the complex

plane a along the real semi-axis Re a 
 0, Im a ¼ 0. As a

rule, it bypasses real poles fn ¼ fnðcÞ > 0 of the matrix K
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elements from below (Fig. 2), while infrequent irregular

poles associated with so-called backward modes appearing

in the ranges enclosed between zero group velocity (ZGV)

frequencies15,16 are rounded from above.

Remark 1. Hereinafter, we use the same notations for

functions depending on vector arguments taken in different

coordinate systems, e.g., u (x, y, z) and uðr;u; zÞ, Qða1; a2Þ
and Qða; cÞ, etc, though one should keep in mind that

uðr;u; zÞ : ¼ uðr cos u; r sin u; zÞ and

Qða; cÞ : ¼ Qða cos c; a sin cÞ

In outward appearance, representations (11) and (14)

look the same as those for an isotropic laminate structure;

the difference is in more complex dependence of the ele-

ments Kij ¼ K̂ij=D of matrix K on the angular variable c. In

an isotropic case c enters into the numerators K̂ijða; cÞ via

the factors e6imc with the only possible values m¼ 0, 1, and

2, while the denominator DðaÞ and, consequently, the poles

fn are independent of c. In an anisotropic case, K̂ijða; cÞ and

Dða; cÞ are smooth functions of c and, correspondingly, the

poles fn obtained from the characteristic equation

Dða; cÞ ¼ 0 are also functions of c.

This difference is not vital for direct numerical integra-

tion over the paths C1;C2, or Cþ, which is implemented the

same way as in the isotropic case (e.g., Ref. 17 and the refer-

ences cited therein). Hence, with given K and Q integral rep-

resentations (11) and (14) may effectively be used for

numerical evaluation of the composite plate dynamic

response u(x) in a not distant vicinity of the area of loading

X. However, with increasing distance from X, direct numeri-

cal integration becomes too time consuming due to the oscil-

lating factor e�iða1xþa2yÞ in the integrand. This restriction is

conventionally overcome via the use of GW asymptotics

derived in terms of residues from the poles fn.

IV. GUIDED WAVES

Within a 2D statement, when q and u are independent of

one horizontal space variable (e.g., of y), only a one-fold inte-

gration over C1 remains in representation (11). Therefore, the

contribution of residues is easily derived via closing the inte-

gration path C1 into the upper or lower half-plane of the com-

plex plane a ¼ a1 in accordance with the Jordan lemma.

Then, in accordance with the Cauchy residue theorem, the

original path integral is equal to the sum of the residues from

the poles inside the closed contour. Unfortunately, in a 3D

statement, the double integrals of form (11) or (14) cannot be

processed in the same way. If one integration (say over C1) is

replaced by the sum of residues, the integration over C2 is still

required. Such an approach, combining the residue technique

with the numerical integration is also implemented,18 but it

remains rather time consuming. To a considerable degree, this

is because the poles and residues with respect to a1 are func-

tions of a2 and so must be recalculated at every step of numer-

ical integration over C2. That is why in many cases (e.g.,

Refs. 11 and 19) 3D GW asymptotics are constructed as a

superposition of 2D asymptotic solutions.

Integrals of form (14) cannot be directly reduced to a sum

of residues since the path Cþ does not go along the whole real

axis �1 < Re a <1, Im a ¼ 0. Its closing adds an integra-

tion over a contour coming back from infinity to the origin

a ¼ 0, which remains as an addition to the residues. This ob-

stacle can be avoided by means of the so-called contour center-

fold procedure for the Cþ central spreading onto the whole-

axis contour C ¼ Cþ [ C� (Fig. 2). For the Green matrix,

kðxÞ ¼ 1

ð2pÞ2
ð

Cþ

ð2p

0

Kða; c; zÞe�iar cosðc�uÞdcada; (15)

this procedure is accomplished based on the series

representation20

e�iar cosðc�uÞ ¼
X1

m¼�1
JmðarÞeimðc�u�p=2Þ (16)

and the splitting property

JmðzÞ ¼
1

2
Hð1Þm ðzÞ þ Hð2Þm ðzÞ
h i

;

where Jm and Hð1;2Þm are the Bessel and Hankel functions.

The change of variable a :¼ �a in the integrals with Hð2Þm

converts them into the integrals over the supplemented path

C� (Fig. 2), while the properties

Hð2Þm ð�arÞ ¼ ð�1Þmþ1Hð1Þm ðarÞ and

Kð�a; cÞ ¼ Kða; cþ pÞ (17)

finally lead to the same integrands as in the integrals over

Cþ. Ultimately, we arrive at the representation

kðxÞ ¼ 1

8p2

X1
m¼�1

ð2p

0

ð
C

Kða; c; zÞHð1Þm ðarÞada

� eimðc�u�p=2Þdc; (18)

in which C can be closed upward by a semicircle contour CR

of a large radius R (Fig. 2) due to the integrands’ exponential

decrease assured by the Hankel function behavior

Hð1Þm ðarÞ ¼ ð�iÞm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðiparÞ

p
eiar½1þ Oðjarj�1Þ�;

jarj ! 1: (19)

The residue theorem brings Eq. (18) to the double series

representation

FIG. 2. (Color online) Integration contour Cþ, whole-axis contour C and

closing contour CR.
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kðxÞ¼
X1
n¼1

knðxÞ; knðxÞ¼
X1

m¼�1
knmðr;zÞe�imðuþp=2Þ

knm¼
1

2p

ð2p

0

Rnðc;zÞHð1Þm ðfnrÞeimcdc;

Rnðc;zÞ¼
i

2
jnfnresKða;c;zÞja¼fn

;

(20)

where nearly always jn¼ 1, except in the case of infrequent

irregular real poles yielding backward modes for which

jn¼�1. Poles fnðcÞ falling inside the closed contour lie in

the upper half-plane Im a 
 0 above the contour C. They are

numbered in ascending order with respect to Im fn increasing

(Im fnþ1 
 Im fn) so that the real ones arise first.

With a fixed order m, the terms knm exponentially decay

as n increases in accordance with asymptotics (19)

knmðr; zÞ � Oðe�Im fnrÞ; n!1; Im fnr !1: (21)

Therefore, only a limited number of poles fn and residues Rn

are needed for a practical k (x) approximation by a truncated

sum (20)

kðxÞ �
XN

n¼1

knðxÞ; N 
 Nr: (22)

The number of kept terms N is inversely proportional to r
but should be no less than the number of real poles Nr.

Moreover, with respect to m, the terms knm also tend to

zero faster than any power

lim
m!1

knmm p ¼ 0 for any p;

because they are in fact the Fourier-series coefficients of

infinitesimally smooth functions of c [see Eq. (20)]. Thus,

the series for kn (x) can also be truncated with high accuracy.

In the special case of isotropic materials, the series rep-

resenting kn exactly degenerates to the finite sum

knðxÞ ¼
X2

m¼�2

knmðr; zÞe�imðuþp=2Þ (23)

in view of the above mentioned K-matrix expansion

Kða; c; zÞ ¼
X2

m¼�2

Kmða; zÞeimc (24)

and the poles’ independence of c. In this case,

knmðr; zÞ ¼ RnmðzÞHð1Þm ðfnrÞ;

Rnm ¼
i

2
jnfnres Kmða; zÞja¼fn

;

and Eq. (23), in fact, provides an exact analytical representa-

tion for normal modes excited in an isotropic laminate by

PLs dðx; yÞij. The substitution of asymptotics (19) into sum

(23) yields the far-field asymptotics of Green’s matrix k(x)

for the isotropic case

kðxÞ¼
XNr

n¼1

bnðu;zÞeifnr=
ffiffiffiffiffiffiffi
fnr

p
½1þOððfnrÞ�1Þ�;fnr!1

bn¼
ffiffiffiffiffiffi
i

2p

r
fnresKð�a;u;zÞja¼fn

: (25)

The terms of this expansion are cylindrical GWs propagating

in radial directions with the phase velocity vn ¼ x=fn. Their

amplitude functions bn coincide within constant factors to

the cross-sectional eigenforms obtained via the modal analy-

sis technique.

In the anisotropic case, however, the pole variation

fnðcÞ prevents drawing the Hankel functions out of the inte-

grals over c. Therefore, although every term kn (x) may be

still treated as a GW associated with the pole fn, their far-

field asymptotics is derived directly from Eq. (15) without

resort to expansion (16).

Unfortunately, the central spreading into the contour C
with respect to the same integrand on the C� and Cþ parts is

not possible here. Instead, Eq. (15) may be brought to the

form

kðxÞ ¼ 1

ð2pÞ2
ð

Cþ

�
ð

C�

� �ðp

0

Kða; bþ uþ p=2; zÞ

� eiar sin bdbada:

It is derived by the change of variables

c ¼ bþ u� p=2 for � p=2 < c� u < p=2 and

c ¼ bþ uþ p=2 for p=2 < c� u < 3p=2

accompanied by the change a :¼ �a and the use of property

(17) in the first case. Both path integrals can be closed

upward with the same backward integration over the imagi-

nary semi-axis a ¼ is, 0 � s <1. The residue theorem

brings them to the form

kðxÞ ¼
XNr

n¼1

knðxÞ þ kcðxÞ;

kn ¼
1

p

ðp

0

Rnðh; zÞeisnðbÞrdb; snðbÞ ¼ fnðhÞ sin b;

h ¼ bþ uþ p=2;

kcðxÞ ¼
X1

n¼Nrþ1

signðRe fnÞknðxÞ

� 1

2p2

ð1
0

ðp

0

Kðis; h; zÞe�rs sin bdbsds; (26)

where Rn are the same residues as in Eq. (20), but with the

angular argument h shifted. The terms kn in the first sum

are associated with the real poles fn, while the sum over

complex poles ðn > NrÞ enters into kc together with the in-

tegral over the imaginary semi-axis remaining from the

closed contour. Since the terms associated with complex

poles exhibit exponential decrease (21), a far-field behavior

of kc is determined by that integral. A rough asymptotic

estimation shows that if fr !1, where f is a
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characteristic wave number, it goes down at least as

OððfrÞ�1Þ. This is faster than the decrease of residue terms

kn exhibiting with real fn the square-root behavior

OððfrÞ�1=2Þ. The latter follows from the stationary phase

asymptotics for the integrals over b

knðxÞ ¼
XMn

m¼1

bnmðu; zÞeisnmr=
ffiffiffiffiffi
fr

p
½1þOððfrÞ�1Þ�; r!1

bnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2if=ðps00nðcmÞÞ

q
Rnðhm; zÞ;

snm ¼ snðcmÞ;hm ¼ cmþuþp=2:

(27)

Here cm are stationary points, i.e., the roots of equation

s0nðcÞ ¼ 0, which has the form ctg c ¼ �f0nðhÞ=fnðhÞ. Mn is the

number of roots cm in the interval of integration 0 < c < p.

In the isotropic case f0n � 0 and the only stationary point,

c1 ¼ p=2 yields the far-field asymptotics coinciding with Eq.

(25). In the anisotropic case, the cotangent curve also intersects

the curve f0n=fn at least once, yielding the root c1 located near

p=2 [Fig. 3(a)]. In addition, for certain directions u multiple

intersections of these curves may also occur [Fig. 3(b)] result-

ing in several roots cm, i.e., in Mn > 1 cylindrical GWs propa-

gating in u direction with the phase velocities vnm ¼ x=snm. In

this context, the values snm ¼ fnðhmÞ sin cm are nothing but the

wave numbers of cylindrical modes (27), which reduce to the

conventional wave numbers fn in the isotropic case.

With an anisotropic sample, the phase velocities of cy-

lindrical modes vc
nðuÞ ¼ x=snðuÞ may considerably differ

from the phase velocities vp
nðuÞ ¼ x=fnðuÞ introduced for

plane waves.12 Due to the occurrence of several roots cm, the

angular diagrams for the vc
nðuÞ may have self-crossing loops

[Fig. 4(b)], while the plane-wave diagrams vp
nðuÞ are always

without such loops [Fig. 4(a)]. The test examples of Fig. 4

are for the reference input parameters, therefore, the curves

vp
nðuÞ of Fig. 4(a) coincide with those shown in Figs. 5(a)

and 5(d) from Ref. 8. As for the loops in Fig. 4(b), they take

place for the same modes (SH0 and SH1) as those observed

for the wave curves in Figs. 5(c) and 5(f) from Ref. 8. How-

ever, those diagrams have different physical interpretation,

because vc
nðuÞ are characteristics of cylindrical GWs (27),

while the wave curves8 are associated with group velocities

of plane waves going in various directions u.

The far-field asymptotics for GWs generated by a load q

is easily derived from convolution (9) by the substitution

k(x) in form (27) and subsequent cubature discretization of

the integration over X

uðxÞ ¼
XN

n¼1

unðxÞ þ OððfrÞ�1Þ; fr !1;

unðxÞ ¼ h2
XNj

j¼1

XMnj

m¼1

bnmðuj; zÞqje
isnmjrj=

ffiffiffiffiffiffi
frj

p
:

(28)

Here qj¼ q(xj, yj), (xj, yj) are cubature nodes covering X

with a spacing h, rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2 þ ðy� yjÞ2

q
and

uj : cos uj ¼ ðx� xjÞ=rj; sin uj ¼ ðy� yjÞ=rj. The station-

ary phase equations must be solved for every direction uj

yielding in Mnj roots cmj; snmj ¼ snðcmjÞ.
The terms un are superpositions of cylindrical GWs gener-

ated by elementary sources located at the nodes xj¼ (xj, yj, 0).

They propagate with phase velocities which are approximately

equal to those associated with the direction u. At sufficiently

large distances, such that all the directions uj become practi-

cally parallel each other (uj � u), one can use the estimation

rj�r�ðxjcosuþyjsinuÞþOðjxjj=rÞ;r!1 (29)

to change the sum over j into the integral sum for

Q ¼ F xy½q� at a1 ¼ �snm cos u and a2 ¼ �snm sin u. It leads

to the more compact asymptotic representation

FIG. 3. (Color online) Single intersection of the ctg c and �f0n=fn curves

yielding one stationary point c1 � p=2 for u ¼ 45� (a) and multiple inter-

sections for u ¼ 0� (b); sample A, x ¼ 1, n¼ 2, SH mode.

FIG. 4. (Color online) Angular dia-

grams for the phase velocities of

plane (a) and cylindrical (b) modes,

sample A, x ¼ 1.
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unðxÞ �
XMn

m¼1

anmðu; zÞeisnmr=
ffiffiffiffiffi
fr

p
; fr !1

anm ¼ bnmðu; zÞQð�snm;uÞ;
(30)

which is valid when condition (29) holds. It is especially

convenient when an analytical form of Qða; cÞ is available.

Thus, double-integral representation (14), residue series

(20) with one-dimensional angular integration and closed-

form asymptotics (27)–(30) provide three different ways to

calculate the wave field. They are advantageous in overlap-

ping near-field, intermediate and far-field zones, respec-

tively. The upper limit r0 of the near-field range 0 � r < r0

is conditioned by computational costs, increasing in parallel

with r due to the oscillation of the exponential factor in the

integrand, while the lower limit r– of the intermediate zone

r� � r � rþ depends on the number of terms kept in trun-

cated series (20) (the larger the number of complex poles fn

and terms in sums over m are accounted for, the smaller r–

can be taken, down to r–¼ 0 for the infinite series). The

usage of residue expansions has to be supplemented with a

prior tabulation of the poles fnðcÞ and residues RnðcÞ, pre-

venting repeated recalculations for different r. Hence, the

upper limit rþ depends on the accuracy of numerical integra-

tion over c with the tabulated values entering into the inte-

grands for knm. The lower limit ra of the far-field distances

ra < r <1 is controlled by the accuracy of stationary phase

asymptotics (27) and by the error induced by neglecting the

term kc. Test computations show that the latter contribution

is much smaller than might be expected from the rough esti-

mation kc � OððfrÞ�1Þ, as fr !1. With asymptotics (27),

(28), and (30), no integration and no pole tabulation is

needed. Therefore, they are ideal for a fast GW analysis, in

particular, for depicting angular diagrams for waves radiated

from a given source to infinity.

V. GREEN’S MATRIX CALCULATION

The application of the integral and asymptotic represen-

tations derived above assumes the use of effective algo-

rithms for the matrix K calculation. The algorithm described

below has been elaborated as a generalization of the methods

developed for isotropic multilayered and functionally gradi-

ent waveguides,21,22 being in the category of transfer matrix

algorithms. The crucial point here is ensuring numerical sta-

bility over the entire range of input parameters. In addition

to standard techniques preventing the occurrence of expo-

nential factors in the diagonal blocks,10,21,23 we also use a

scheme preventing ill-conditioned matrix inversions in the

course of recursive calculations.

In the isotropic case, the transform F xy converts the

Lamé equations into a system of linear ordinary z-differential

equations (ODEs) with respect to Uða1; a2; zÞ. Their general

solution with several unknown coefficients can be written in

a closed analytical form. The substitution of such solutions,

derived for every sublayer Dm, into the interface and external

boundary conditions leads to linear matrix equations with

respect to the unknown coefficients. These equations are

solved by means of recursive matrix algorithms.

The execution of this scheme with anisotropic materials

encounters certain obstacles. First, the transform F x1x2
being

applied to Eq. (4) breaks its compactness. The form of the

resulting ODEs becomes unwieldy and the general solution

cannot be derived analytically in all cases. To avoid this ob-

stacle, we apply the triple transform F x with respect to all

space variables xi, i¼ 1, 2, 3, instead of the double transform

F x1x2
. In doing so, the multiplier �ia3 is treated as an opera-

tor notation for the derivative @=@z, in accordance with the

transform property

F x

@nu

@xn
j

" #
¼ ð�iajÞnUðaÞ; where

UðaÞ ¼ F x½u�; a ¼ ða1; a2; a3Þ:

As a consequence, the homogeneous ODEs following from

Eq. (4) can be written in the form

½BðaÞ � qx2I�Uða1; a2; zÞ ¼ 0; (31)

where I is the unitary matrix and B ¼ ½bij�3i;j¼1, bij ¼ Ciljkakal

is a matrix form of the Christoffel tensor for anisotropic elas-

tic continuum.12

Non-zero solutions to Eq. (31) are sought for in the form

U ¼ mekz. Its substitution leads to the matrix eigenproblem

½BðaÞ � qx2I�m ¼ 0 (32)

in which a3 ¼ ik. The characteristic equation

det½BðaÞ � qx2I� ¼ 0 (33)

is a polynomial of degree 6 with respect to a3, hence six

eigenvalues kn ¼ �ia3;nða1; a2;xÞ are expressed via its roots

a3;n. If all the roots kn are single or the number of eigenvec-

tors mn associated with multiple roots is equal to the total

roots’ multiplicity (the Jordan basis does not include adjoint

vectors), then the general solution has the form

Uða1; a2; zÞ ¼
X6

n¼1

tðnÞmneknz: (34)

Fortunately, a set of input parameters a1; a2;x, for which the

Jordan basis contains adjoint vectors and this form becomes

FIG. 5. Out-of-plane displacements Re uzðx; y; 0Þ generated by a circular

piezo-patch in an isotropic plate (a) and in laminate A (b) by the RT source

of radius a¼ 5 at x ¼ 0:25.
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inapplicable, is of measure null. Therefore, such a case is

unstable and may be avoided with a minimal variation of pa-

rameters. The only important special case, when Jordan

blocks of size more than one exist in the whole range of

a1; a2 variation, is x ¼ 0, i.e., a static solution. Nevertheless,

with a minimal variation of x the form (34) again becomes

applicable for practically all values of a1 and a2.

Remark 2. Within the classical Stroh formalism,24 the

matrix of the characteristic equation is expanded in powers

kk; k ¼ 0; 1; 2. Such an expansion is helpful for analytical

calculations, but it is unnecessary for computer root finding

directly from Eq. (33).

The roots kn may be divided into two groups: kj ¼ rj

and kjþ3 ¼ �rj (j¼ 1, 2, 3) and arranged as follows:

Re r1 
 Re r2 
 Re r3 
 0 and

Im r3 � Im r2 � Im r1 � 0: (35)

In the special case of isotropic materials, the roots take the

form rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � j2

j

q
(r3 � r2), where a2 ¼ a2

1 þ a2
2,

jj ¼ x=vj are the wave numbers of longitudinal P (j¼ 1)

and shear S (j¼ 2) waves, and vj are the corresponding phase

velocities.

For half-space structures (H ¼ 1), such root regulation

is significant for the rejection of unphysical terms with the

exponentials e�irjz in Eq. (34) not meeting the attenuation

and radiation conditions at infinity z! �1. In the sub-

layers Dm root selection allows one to avoid growing expo-

nentials in the calculations by taking general solutions of the

form

U�Um¼
X3

j¼1

½tðjÞm mje
rjðz�zmÞþ tðjþ3Þ

m mjþ3e�rjðz�zmþ1Þ�;

z2Dm;m¼1;2;…;M

(36)

instead of form (34) (following Ref. 23, a similar form has

been used in Ref.10).

The vectors Um, as well as the Fourier symbols of the

stress vectors Tm ¼ F xy½sm�, can be written in the compact

matrix form

UmðzÞ ¼ MmEmðzÞtm; Tm ¼ �iPmMmEmðzÞtm; (37)

where

Mm ¼ m1 m2…m6½ �; Pm ¼ ½pij�6i;j¼1; pij ¼ Ci3jnan;

EmðzÞ ¼ diag ½eþm;1; eþm;2; eþm;3; e�m;1; e�m;2; e�m;3�;

eþm;j ¼ erjðz�zmÞ; e�m;j ¼ e�rjðz�zmþ1Þ;

tm ¼ ftð1Þm ; tð2Þm ; …; tð6Þm g; i; j ¼ 1; 2; 3; m ¼ 1; 2; …; M:

The unknown coefficients tðjÞm assembled into the column

vector t ¼ ft1; t2;…; tMg of length 6M are obtained from the

linear algebraic system

A t ¼ f; f ¼ ff1; 0;…; 0g; f1 ¼ fQ; 0; 0; 0g; (38)

which follows from the substitution of expressions (36) into

the transformed boundary conditions (5) and (6). Outwardly,

the matrix A has the same two-diagonal block structure as

with isotropic sublayers22

A ¼

Sþ1 0 0 … 0 0

C�1 �Cþ2 0 … 0 0

0 C�2 �Cþ3 … 0 0

… … … … … …

0 0 0 … C�M�1 �CþM
0 0 0 … 0 S�M

2
6666664

3
7777775

(39)

but the size and appearance of the blocks are obviously

different

C6
m ¼

S6
m

M6
m

� �
; S6

m ¼ �iPmM6
m ; M6

m ¼ MmE6
m ;

Eþm ¼ EmðzmÞ ¼ diag ½1; 1; 1; eð1Þm ; eð2Þm ; eð3Þm �;

E�m ¼ Emðzmþ1Þ ¼ diag ½eð1Þm ; eð2Þm ; eð3Þm ; 1; 1; 1�;

eðjÞm ¼ e�rjhm ; hm ¼ zm � zmþ1:

The blocks C6
m and E6

m are of size 6� 6 while S6
m and M6

m

are of size 3� 6. The subscript m indicates that the corre-

sponding blocks are expressed via the eigenvalues rj, eigen-

vectors mn and elastic stiffness constants Cijkl for the mth

sublayer Dm.

Due to the use of representation (36), the diagonal and

adjacent to the diagonal elements aij of matrix A have no ex-

ponential factors, while all other non-zero elements may

only have the exponentially decreasing factors eðjÞm . Corre-

spondingly, A is a well-conditioned matrix and numerical

solution of system (38) is stable. With a large number of

layers M, the matrix A becomes too large and sparse for the

use of direct methods elaborated for dense matrices. The

equalities

C�mtm ¼ Cþmþ1tmþ1; m ¼ 1; 2; …; M � 1

associated with interface conditions (6) allow one to organ-

ize a low-cost recurrent double-sweep algorithm.

Such an approach seems to be quite natural; it is imple-

mented in most transfer matrix algorithms. It fails, however,

in some situations. The imperfection results from the degen-

eration of matrices C�m into singular ones, due to the expo-

nential decrease of their first three columns with the increase

of the parameters ahm, which control the powers of the expo-

nentials eðjÞm ¼ e�rjhm .

A stable recurrent algorithm free of this imperfection

can be derived by formally subdividing A into 6� 6

blocks Amn : A ¼ ½Amn�Mm;n¼1. The diagonal blocks Amm

remain non-singular as eðjÞm ! 0. Moreover, their condition

numbers do not become worse after adding neighboring

blocks to them. Therefore, a stable recursive process with-

out inversion of ill-conditioned matrices can be organized

in the following way
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m ¼ M : BM�1 ¼ �A�1
MMAMM�1;

m ¼ M � 1;M � 2;…; 2 :

Bm�1 ¼ �ðAmm þ Ammþ1BmÞ�1Amm�1;

m ¼ 1 : B ¼ A11 þ A12B1; t1 ¼ B�1f1;

m ¼ 2; 3;…;M : tm ¼ Bm�1tm�1:

(40)

Finally, the matrix Kða1; a2; zÞ is constructed based on the

solution (36). Its columns Kn have the same appearance as

the vector U with coefficients tðjÞm found from system (38) for

the three right-hand side vectors f1 ¼ fin; 0; 0; 0g, n¼ 1, 2,

3, respectively.

Remark 3. Similar algorithms can be used for the calcu-

lation of Green’s matrices associated with internal point

sources modeled by d-like jumps of stress or displacement

fields: ½s�m0
¼ dðx; yÞin or ½u�m0

¼ dðx; yÞin (n¼ 1, 2, 3). Sys-

tems (38) formed for such problems differ only by right-

hand sides f containing unit vectors in at the place corre-

sponding to the m0 block level in the matrix A. Such Green’s

matrices may be used as special laminate elements (LEs) for

the approximation of diffracted wave fields or for the elasto-

dynamic analysis of long but finite laminate structures, as

has been accomplished in the isotropic case.22

VI. NUMERICAL EXAMPLES

A. GW directivity

Both sources (8) are axially symmetric, therefore, the

spatial directivity of the waves may appear to be due only to

anisotropy of the material. As an example, Fig. 5 displays

the amplitude of the vertical (out-of-plane) displacement

Re uzðx; y; 0Þ generated by a ring source of radius a¼ 5 in a

homogeneous isotropic plate [Fig. 5(a)] and in laminate A
[Fig. 5(b)] at x ¼ 0:25, when the dimensionless transverse

wavelength kT ¼ cT=ðfHÞ � 25. The dimensionless proper-

ties of the isotropic layer are the same as those of laminate A
in the fiber direction: Poisson’s ratio m ¼ m12 ¼ 0:3, the shear

modulus l ¼ l12 ¼ 1, and q ¼ 1. Besides the GW directiv-

ity, Fig. 5(b) illustrates the usage of representations (14),

(22), and (28) for near-, intermediate-, and far-field ranges.

Test computations have shown that for r> 10 (r=kT > 0:4),

the approximation (22) with the real poles only (N¼Nr¼ 3)

yields practically the same result as direct numerical integra-

tion (14) (i.e., r–¼ 10). The asymptotics (28) coincides with

both of those results for r> 20 (r=kT > 0:8, ra¼ 20). Thus,

low-cost asymptotics (28) is applicable even at less than one

wavelength distances from the source (ra ¼ 0:8kT).

More visually than in Fig. 5, the directivity is depicted

by angular diagrams based on equations

VzðuÞ ¼ xjuzðr;u; 0Þj
ffiffi
r
p

and

EðuÞ ¼
ð0

�H

erðr;u; zÞdz; fr >> 1; 0 � u � 2p

(41)

obtained by using the asymptotics (30). Here er ¼ � x
2

Im ðu;
srÞ is the radial component of the time-averaged power den-

sity vector e (Umov’s vector25), which specifies the structure

of elastic wave energy fluxes in a harmonic field ue�ixt; sr is

a stress vector at an area element with the radial normal

n ¼ fcos u; sin u; 0g. The characteristic VzðuÞ describes the

far-field angular distribution of the amplitude of the out-of-

plane particle velocity at the surface, while EðuÞ yields the

total (integrated over the vertical cross-section) amount of

wave energy propagating from the source to infinity in the

direction u. As in the case of isotropic waveguides,17 the

wave energy fluxes can be visualized by energy streamlines

tangential to the vector field e (x).

Figure 6 shows examples of Vz(u) diagrams for GWs

excited by both sources (8) in the laminate A at the frequen-

cies x¼ 0.25, 1 and 1.75. Hereinafter, a¼ 5 if not specified

otherwise. Similar diagrams for the 8-layer substrate B are

presented in Fig. 7. One can see that with both specimens the

directivity of surface waves generated by the point source is

practically independent of frequency [Figs. 6(a) and 7(a)],

whereas the directivity of the sized RT source is frequency de-

pendent. With plate A at x¼ 0.25 the main lobe is directed

along the fibers of upper plies (u¼ 45�), but at x¼ 1 and

x¼ 1.75 it turns to the fiber direction of inner sublayers

(u¼ 135�) [Fig. 6(b)]. With structure B this dependence is

even more complex [Fig. 7(b)], while the PL yields just

FIG. 6. (Color online) Amplitude

diagrams VzðuÞ for GWs excited by

PL (a) and RT (b) sources in lami-

nate A.
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slightly directed signals tending to degenerate into the simple

circle diagrams inherent for isotropic plates as the number of

sublayers M increases [Fig. 7(a)]. The same tendencies can

also be seen in the energy diagrams E(u) in Figs. 8–10.

Theoretical investigations of wave energy fluxes in ani-

sotropic laminates based on the concept of Gaussian beams

are presented in Ref. 9. They are augmented by experimen-

tal, laser-based measurements of surface waves. The results

obtained for a specimen similar to laminate A also demon-

strate preferred energy outflow in the direction of the upper-

ply fibers (u ¼ 45�), with a weaker flux in the orthogonal

direction u ¼ 135� connected with the inner-ply orientation

[as in Fig. 6(a)]. Test computations for other composite plate

parameters9 gave similar power density patterns. In all cases,

laser-generated (point-source) GWs transport the greater part

of their total energy in the direction of upper-ply fibers,

unlike to GWs actuated by a sized source (e.g., Fig. 9).

Besides, experimental results showing preferable Lamb

wave radiation in the fiber directions are presented in recent

paper (Ref. 26). As for the theoretical model described in the

present paper, it has also been tested against experimental

measurements in cooperation with German colleagues.27

B. Energy partition

For a better understanding of the main lobe alternation

mechanism revealed for sized sources, let us consider wave

energy behavior in more detail. The energy conservation law

implies that the value E0 ¼
Ð 2p

0
EðuÞdu is independent of r

and equal to the amount of energy incoming into substrate

through the load area X over the time period T ¼ 2p=x. It

may also be referred to as the source power. With a fixed force

applied to a non-point area X, the source power E0 depends

not only on frequency and substrate’s material properties but

also on the X size as well. Figure 11 illustrates the dependency

of E0 on a and x for the RT source bonded to isotropic (a)

and anisotropic (b) substrates having the same properties as in

Fig. 5. One can see that E0 maxima and minima (light and

dark stripes) follow hyperbolic trajectories ax ¼ const. It

hints at the existence of certain wavelength-to-source-di-

ameter ratios that are either optimal or unfavorable for the

radiation of wave energy from the source to infinity.

This consideration is in agreement with previous 2D

analysis for strip piezo-actuators.28 Based on a strict patch-

layer contact problem solution it has been shown that the

energy of generated GWs reaches maximal values if the

patch width 2a is equal to a half-number of its wavelength k

2a=k ¼ k þ 1=2; k ¼ 0; 1; 2;…: (42)

In such a case, the modes generated by the strip edges x ¼ 6a
are added in-phase, while with the ratio 2a=k ¼ k they are out

of phase and destructively interfere with each other.

FIG. 7. (Color online) The same as

in Fig. 6 but for the eight-layer non-

symmetric specimen B.

FIG. 8. (Color online) Energy diagrams EðuÞ for GWs excited by the point-

source in laminate A. FIG. 9. (Color online) The same as in Fig. 8 but for the circular RT source.
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A similar mechanism operates with circular sources. In

the isotropic case, the amplitude factors of normal mode

asymptotics (30) take the form

anðxÞ ¼ bnðu; zÞQð�fn;uÞ

and from the explicit Q representation for the RT source

given in Eq. (12) it directly follows that junj ¼ 0 if

afn ¼ jk; k ¼ 0; 1; 2;…, where jk are real zeros of the Bessel

function J1: J1(jk)¼ 0. If only one mode f1 is in the x range

considered, then Fig. 11(a) would present regular dark

stripes along the curves af1 ¼ jk; k ¼ 1; 2; 3;…, alternated

with white zones of maximal radiated source energy as

af1 � ðjk þ jkþ1Þ=2. With two fundamental modes A0 and S0

actually generated in this range, the alternation of such zones

is not so regular, being dependent on which of the modes

provides the dominate contribution to the total energy E0.

From Fig. 11(a), one can conclude that a border between the

areas of A0 and S0 energy domination exists in the ða;xÞ
plane approximately along the line x ¼ a� 4. With aniso-

tropic laminate A [Fig. 11(b)], the light and dark stripes form

a similar pattern, which, however, does not coincide with the

pattern for an isotropic plate.

The regularities of the main lobe turnings in the EðuÞ
diagrams may be derived from an analysis of the source

energy partition between GWs radiated into the neighboring

first and second quadrants

EI ¼
ðp=2

0

EðuÞdu and EII ¼
ðp

p=2

EðuÞdu:

The energy conservation law results in the balance equality

EI þ EII ¼ E0=2. Therefore, it is convenient to evaluate the

partition in terms of the coefficients jI ¼ 2EI=E0 and

jII ¼ 2EI=E0 which in sum are equal to unity: jI þ jII ¼ 1.

Figure 12 shows their dependence on x for a PL (a)

and for RT of radii a¼ 3, 5, and 8 (b)–(d). One can see

that the PL radiates more energy into the first quadrant

(i.e., along the fibers of the upper plies) with the energy

balance being practically independent of x. This is in con-

formity with the PL diagrams in Fig. 8. On the contrary,

the RT plots reveal the alternation of the principal direction

of radiation associated with both x and a variation. The

larger the source radius a, the more frequent such alterna-

tion versus x becomes. This again points to the existence

of optimal ratios 2a=k providing maximal energy radiation

in the direction of upper fibers u ¼ 45� (i.e., into the first

quadrant) and in the orthogonal direction of inner fibers

u ¼ 135�, similar to Eq. (42).

The mechanism of maximal radiation in a certain direc-

tion u is roughly the same as with strip actuators. It may be

explained by an in-phase composition of GWs generated by

the opposite edges of the circular RT source at the ends of

the u-oriented diameter. The alternation obviously results

from the fact that due to anisotropy the wave length

k ¼ 2p=snm is different for different directions of radiation

u. With increasing number of multidirectional sublayers,

this difference is less pronounced, therefore, with laminate

B, the angular directivity becomes blurry.

VII. CONCLUSION

The mathematical model developed based on the integral

equation approach has proved to be an efficient tool for fast

computer simulation of GWs generated by a surface force

applied to an anisotropic laminate composite plate. The

explicit series and the closed-form asymptotic representations

derived for 3D Green’s matrix from the double path Fourier

integrals in terms of cylindrical waves allow one to strictly

account for the wave source characteristics. Due to low-cost

and clear physical interpretation of the wave characteristics,

the model is advantageous for tackling the problems that

occur in the physical acoustics of laminate structures and

FIG. 10. (Color online) Energy diagrams EðuÞ for laminate B.

FIG. 11. Source power E0 as a function of transducer radius a and frequency

x for isotropic plate (a) and anisotropic laminate A (b).

FIG. 12. (Color online) Frequency dependencies of the partition coefficients

jI and jII for a PL (a) and for RT of radii a¼ 3, 5 and 8 (b)–(d), laminate A.
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SHM applications. The method can be useful for the identifi-

cation of composite plate material parameters from Lamb

wave measurements, for the detection and estimation of

defects, for a proper choice of excitation frequencies, and for

optimal selecting of transducer size and positioning.
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