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Resonance localization of wave energy in two-dimensional (2D) waveguides with obstacles, known

as a trapped mode effect, results in blocking of wave propagation. This effect is closely connected

with the allocation of natural resonance poles in the complex frequency plane, which are in fact the

spectral points of the related boundary value problem. With several obstacles the number of poles

increases in parallel with the number of defects. The location of the poles in the complex frequency

plane depends on the defect’s relative position, but the gaps of transmission coefficient plots gener-

ally remain in the same frequency ranges as for every single obstacle separately. This property

gives a possibility to extend gap bands by a properly selected combination of various scatterers. On

the other hand, a resonance wave passing in narrow bands associated with the poles is also

observed. Thus, while a resonance response of a single obstacle works as a blocker, the waveguide

with several obstacles becomes opened in narrow vicinities of nearly real spectral poles, just as it is

known for one-dimensional (1D) waveguides with a finite number of periodic scatterers. In the

present paper the blocking and passing effects are analyzed based on a semi-analytical model for

wave propagation in a 2D elastic layer with cracks or rigid inclusions.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3592225]
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I. INTRODUCTION

The effect of traveling wave blocking by a system of

obstacles is widely used in various areas, such as vibrodamp-

ing, anti-seismic protection, opto- and microelectronics, etc.

The effect manifests itself as deep gaps in the frequency spec-

tra of transmitted signals. The gap band appearance is espe-

cially sound in periodic structures, e.g., with systems of

interdigital contacts or grooves used in acoustoelectronic tech-

nology, in periodic composites, phononic lattices, and pho-

tonic crystals. The Bloch-Floquet theory provides exhaustive

information about wave processes in infinite periodic struc-

tures,1 however, it becomes inapplicable with a finite number

of scatterers or if a fluctuation in cell properties occurs.

Numerical examples for disordered phononic2 and photonic

crystals3,4 show that even a little deviation may considerably

change their transmitting and blocking properties.

On the other hand, a resonant shielding of traveling

waves by one or more obstacles is known as a trapped mode

effect.5,6 This effect features the capture and localization of

time-averaged wave energy of a time-harmonic wave field

ue�ixt in the form of energy vortices.7 The trapped mode

effect is closely connected with the allocation of spectral

points xn of the corresponding boundary value problem.

They appear in the solution as complex poles of the fre-

quency spectrum of the diffracted field usc analytically con-

tinued into the complex frequency plane x. The points xn

are natural frequencies of the waveguide with obstacles. The

closer a pole xn is located to the real axis, the more the

trapped mode effect becomes apparent at xg � Rexn. Spe-

cific forms of energy localization are governed by the eigen-

solutions un associated with the spectral points xn.

Besides the blocking ability, the resonance response of

hidden defects can be used for nondestructive testing pur-

poses, e.g., for guided wave crack detection in plates and

composite laminates. Therefore, two-dimensional (2D) elas-

tic layer waveguides with defects in the form of cracks,

voids, and inclusions are also in the focus of research. Our

studies have shown that with several defects the eddies of

wave energy may work not only as blockers but also as

energy pumps. It has been ascertained that accounting for

mutual wave interplay among the obstacles leads to a

realignment of energy streamlines in such a way that the

energy circulation in the vortex zones formed around the

obstacles becomes coordinated, providing energy passage. In

the transmission coefficient plots jþðxÞ such pass modes

appear as narrow peaks centered at frequencies xp located

close to the resonance poles xn: xp � Rexn, just as in the

case of one-dimensional (1D) waveguide structures.8 The

number of poles xn and, correspondingly, of the transmis-

sion peaks is proportional to the number of obstacles M so

that with a large M the plots jþðxÞ exhibit typical comb-like

patterns. It is significant that such transmission peak pat-

terns, as well as the patterns of nearly real pole groups, are

inherent to a wide variety of physically different 1D wave-

guides.3,8–12 As M increases, the peaks tightly fill in re-

stricted frequency intervals forming pass bands inside wider

gap bands in compliance with the Bloch-Floquet theory.

The present paper aims at the description of similar

effects revealed for 2D structures, specified in Sec. II. To

gain a coherent understanding, we start from blocking effects
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peculiar to one-defect waveguides (Sec. III). Then the

appearance of resonance pass peaks in the case of two and

more obstacles is shown in Sec. IV. These examples are aug-

mented by the examples for a 1D model of a spring sup-

ported string with pointwise defects,12 intended to visually

illustrate the connection between the allocation of pass peaks

and resonance poles.

II. MATHEMATICAL FRAMEWORK

Time-harmonic guided wave propagation in a 2D elastic

layer with thin or volumetric defects (Fig. 1) is described by

the displacement field uðx;xÞe�ixt, u ¼ ðux; uzÞ, x ¼ ðx; zÞ,
formed from the incident and scattered fields u0 and usc:

u ¼ u0 þ usc. The incident field u0 generated by a surface

load q obeys the elastodynamic Lamé-Navier equations and

boundary conditions at the plane-parallel sides of the wave-

guide without obstacles. It can be represented via the convo-

lution of the Green matrix k with the source vector q:

u0 ¼ k � q.7,13

Furthermore, the incident field in the form of traveling

waves u0 ¼
P

j ajðzÞeifjx is derived from the integral repre-

sentation using the residue technique. In this context, the

wave numbers fj are poles of the Green matrix Fourier sym-

bol Kða; zÞ ¼ Fx½kðx; zÞ� in the complex a-plane (a is the pa-

rameter of the Fourier transform F x with respect to the

longitudinal coordinate x); the amplitude vectors aj are

expressed through the residues of K at these poles. Specific

forms of the Green matrix elements and of the incoming

Lamb modes may be found in Ref. 7.

Outside the obstacle domain X ¼ [mXm, the scattered

field usc satisfies the same governing equations and boundary

conditions as u0, hence, it is also representable via the wave-

guide Green matrix and, further, in terms of propagating and

inhomogeneous modes associated with the real and complex

fj, respectively. Such representations include unknown fac-

tors that have to be fixed via solution of the corresponding

diffraction problem. In general, the latter can be reduced to a

boundary integral equation (BIE) with respect to an

unknown vector function set on the obstacle boundary S
(S ¼ @X). In the case of cracks or thin inclusions the BIE is

discretized by expanding the unknown vector function in

terms of splines or orthogonal polynomials.7,13 For volumet-

ric voids and inclusions the discretization is based on the

laminate element approximation.14 In all cases the problem

is reduced to a linear algebraic system

Ac ¼ f (1)

with respect to the vector of unknown expansion coefficients

c ¼ ðc1; c2; :::; cNÞT . The roots of the characteristic equation

DðxÞ � det AðxÞ ¼ 0 (2)

approximate spectral points xn of the diffraction problem. In

fact, xn are poles of the diffracted field uscðx;xÞ considered

as a function of x analytically continued into the complex

x-plane.

The transport of wave energy in the time-harmonic field

ue�ixt is visualized by the energy streamlines, which show

the trajectories of time-averaged energy fluxes. At every

point x they are tangential to the power density vector

e ¼ ðex; ezÞ ¼ ðe1; e2Þ introduced by N. Umov for elastody-

namic fields as far back as the 19th century.15 Its compo-

nents en are expressed via the displacement and stress

vectors u and sn: en ¼ �x
2
Imðu; snÞ (sn is a stress vector at

an elementary area orthogonal to the n-th coordinate axis).

The integration of the horizontal component ex over the layer

cross section yields the total amount of time-averaged

energy carried by elastic waves along the waveguide:

E ¼
Ð 0

�h exdz. The transmission coefficient jþ ¼ E=E0 is

introduced as the ratio of the energy E carried by the total

field u ¼ u0 þ usc behind the obstacles to the energy E0 car-

ried by the incident field u0.

Hereinafter, the numerical examples are given in the

dimensionless form assuming the layer thickness h, the shear

wave velocity cs and the density q to be units; Poisson’s ratio

� ¼ 1=3. The dimensionless angular frequency x ¼ 2pfh=cs,

where f is dimensional frequency. The waveguide occupies

the domain �1 < x <1, �1 � z � 0.

III. ONE DEFECT CASE

In the elastic layer with one crack the trapped mode

effect occurs at frequencies xg � Rexn, where the poles xn

are located close to the real axis (jImxn=Rexnj << 1). With

a totally real xn (which is rather seldom in the problems con-

sidered) the residue res uscðx;xÞjx¼xn
is an eigenform of the

oscillation e�ixnt of the defected waveguide. Usually it

exhibits strong localization of the oscillation amplitude near

the obstacles, indicating the accumulation of wave energy in

energy vortices.7 Such vortices block up the energy flow

transferred along the waveguide by the incident field u0.

Figure 2 gives examples of energy streamlines and

power density distribution in the case of resonant (top) and

nonresonant (bottom) waveguide blocking by a single hori-

zontal obstacle. In the first case the obstacle is a strip-like
FIG. 1. (Color online) Elastic waveguides with thin and volumetric

obstacles.
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crack of half-length l¼ 1 and depth d ¼ 0:25. It is modeled

by an infinitesimally thin cut with stress-free sides: sjS ¼ 0

(s is a stress vector at a horizontal surface element). At the

bottom subplots the defect is a thin rigid inclusion (l¼ 1,

d ¼ 0:3), which is assumed to be immovable (ujS ¼ 0). The

wave field is induced by the A0 mode incidence at x ¼ 1:31,

which is resonance frequency for the crack but nonresonance

for the inclusion.

In the first case [Fig. 2(a)], the resonant vortices with

high density of circulating energy [dark spots in Fig. 2(b)]

appear between the crack and the nearest layer side (see also

Ref. 7). In the second case, nonresonant wave shielding is

featured by the absence of such energy vortices with high

energy concentration [Figs. 2(c) and 2(d)]. There are no res-

onance poles xn nearby the frequency x ¼ 1:31, and the

blocking is physically explained by the fact that no traveling

waves may exist in the local waveguides above and beneath

the inclusion since they are one-clamped-side waveguides.

Indeed, the first dimensionless cut-off frequency of a free-

fixed elastic layer of unit thickness is x�1 ¼ p=2, hence the

cut-off frequencies of those local waveguides of thicknesses

d and 1� d are x�1=d � 5:23 and x�1=ð1� dÞ � 2:24, which

is higher than the frequency x ¼ 1:31 considered.

The resonant and nonresonant blocking effects appear in

the plots of the transmission coefficient jþðxÞ in basically

different ways (Fig. 3). One can see that in the first subplot

the resonance frequency xg ¼ 1:31, marked by the arrow, is

featured by a deep gap connected with the wave transmission

shielding by the energy vortices shown in Fig. 2(a). On the

contrary, no gap is observed at this frequency in the second

subplot, which illustrates nonresonant but very good

(jþ < 0:01) blocking in a wide frequency range due to the

absence of traveling waves above and beneath the inclusion

for x < 2:24.

IV. WAVEGUIDES WITH TWO AND MORE OBSTACLES

A. Gap band independence from obstacles’ relative
position

Because the resonance gap bands were comparatively

narrow, we attempted to find a way of their extension by

combining several obstacles.13 Besides, there was an addi-

tional question of self-dependent interest: how the poles xn

would be allocated and appear with two and more obstacles.

It was felt that the presence of multiple defects might lead to

effects contradicting in some respects with the single-defect

resonance phenomena above. Indeed, on the one hand, the

mutual influence of defects should change the pole distribu-

tion in the x-plane. On the other hand, if vortices at the first

obstacle have already blocked the propagation of a signal,

the presence of the following ones should not affect the

FIG. 2. (Color online) Energy streamlines

[(a), (c)] and power density je(x,z)j [(b), (d)]

in the case of resonant (top) and nonreso-

nant (bottom) blocking of incoming A0

mode by a strip-like crack and a thin rigid

inclusion, respectively.

FIG. 3. (Color online) Frequency dependences of the transmission coeffi-

cient jþðxÞ for the same crack (a) and inclusion (b) as in Fig. 2; the arrow

shows xg ¼ Rexn for the nearly real resonance pole xn occurring in the

crack case.
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pattern because the signal does not arrive at them. In other

words, additional obstacles screened by the first one should

not change the frequency of resonance blocking xg and, con-

sequently, the location of the corresponding nearly real pole

xn.

Even the first numerical experiments carried out for the

elastic layer with two cracks have demonstrated that both

these seemingly alternative possibilities took place simulta-

neously: the location of the poles xn constantly varied with

the horizontal distance Dx between them, but it occurred in

such a way that the blocking ranges, conditioned by every

single defect separately, remained intact. Figure 4 (copy of

Fig. 2 from Ref. 13) illustrates how it may occur. The gray

scale pattern shows the transmission coefficient jþ for the

A0 mode running on two horizontal cracks of unit half-width

(l¼ 1) located at the identical depth d ¼ 0:25. The coeffi-

cient jþðDx;xÞ is shown as a function of two variables: the

distance Dx between the crack centers (abscissa axis), and

the frequency x (ordinate axes). The darkest areas in the

ðDx;xÞ plane correspond to total blocking (jþ ¼ 0), while

the white areas correspond to total transmission (jþ ¼ 1).

The solid lines imposed on the pattern show real parts of

the resonance poles xn as functions of the distance: x
¼ RexnðDxÞ (the numbers on the lines correspond to the

sub-indices n of the poles xn). The lower subplot (b) depicts

the dependencies of the imaginary parts ImxnðDxÞ with the

respective line numbering. For comparison, a narrow strip in

the right part of Fig. 4(a) shows the frequency dependence

jþðxÞ for the same single crack. Its three resonance frequen-

cies xg ¼ Rexn (1.31, 2.11, and 2.34 in the case) are plotted

as light dash-dotted lines. The frequency ranges of consider-

able blocking (horizontal dark strips) are located near these

values.

In Fig. 4(a) attention is focused on the fact that with any

Dx the blocking ranges remain approximately the same as

with a single crack, while the pole location varies. With

increasing Dx the values Rexn monotonically decrease,

while the curves Imxn are sine-shaped. Being negative, they

alternatively increase up to the limit value Imx ¼ 0 and

decrease down to certain low limits. Thus, the poles move in

the low half-plane Imx � 0 from right to left alternatively

approaching the real axis Imx ¼ 0 and going away from it.

At certain distances one of the poles touches the real axis,

i.e., it becomes totally real causing a classical trapped-mode

effect at such a frequency x ¼ xn (the case of real discrete

spectral point xn lying on the continuous spectrum x > 0).

At first glance this pole behavior contradicts the infer-

ence about their role in the blocking effects. However, a

more careful analysis shows that the poles approach the real

axis only at the aforementioned frequency ranges of block-

ing by a single crack. Moreover, when a pole starts moving

off from the axis, the next one immediately comes up to this

band, substituting for the predecessor. In that way, nearly

real poles are in constant attendance at the blocking ranges,

providing independent of Dx horizontal dark zones observed

in Fig. 4(a).

With a group of cracks of different lengths and depths

the blocking bands inherent to each of them are joined to-

gether. Obviously, in such a case the nearly real poles are

also always on duty at all those frequency bands irrespective

of the distance among them. This property enables gap-band

extension by combining obstacles with supplementing block-

ing abilities.13

B. Appearance of resonant transmission frequencies

It was noticed that with several obstacles certain narrow

pass peaks in jþðxÞ plots were present in the extended stop

ranges in spite of full overlapping of joined gap bands. In

Fig. 4 the corresponding narrow transmission bands are visi-

ble as light stripes traversing gray and dark background

along the curves RexnðDxÞ. Such narrow transmission bands

inside wider gap ranges appear for various obstacles inde-

pendently of their form and properties.

For example, with two rigid elliptic inclusions a pass

band inside the range of nonresonant blocking is distinguish-

able in the jþðx; d2Þ grayscaled surface as a light narrow

stripe at x � 2 (Fig. 5, left subplot). The ellipses are of

semi-axes a ¼ 0:5 and b ¼ 0:1 and with the fixed center

coordinates (x1; z1Þ ¼ ð0;�0:5Þ and x2 ¼ 2, while the depth

d2 ¼ jz2j of the second ellipse is varied. The plot jþðxÞ
(Fig. 5, right bottom subplot), obtained as a cross section of

the surface jþðx; d2Þ along the segment 1:9 < x < 2:1,

d2 ¼ 0:14 (marked by a white rectangle in the left subplot),

exhibits considerable (more than 30 times) growth in the

FIG. 4. (Color online) The transmission coefficient jþ for two cracks as a

function of Dx and x, and the resonance poles xn as functions of Dx.
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vicinity of x � 1:985. This growth indicates the presence of

a complex spectral point xn not far from this frequency in

spite of the fact that no spectral point exists in this range

with a single rigid inclusion.

To check up this guess, the eigenfrequencies xFEM
n and

the eigenforms unðx; zÞ of a finite-length specimen cut out

from the infinite waveguide with the elliptic inclusions have

been calculated using a finite element method (FEM). The

nearest to the range of interest eigenfrequencies and eigen-

forms of the vertical displacement component juz;nðx; zÞj are

shown in Fig. 6. Among them, only the eigenform associated

with the natural frequency x ¼ 1:982 is featured by a high

oscillation amplitude between the inclusions. Namely this

eigenfrequency is very close to the peak frequency

xp ¼ 1:985 in Fig. 5.

The concentration of oscillation between the obstacles is

a sign of wave energy localization in this zone in the case of

infinite waveguide. It differs from the situation with one

inclusion when vortices appear in front of the obstacle [Fig.

2(b)]. With two and more obstacles, the vortices, appearing

between them at resonance frequencies, start working not as

blockers but as pumps. They let an energy flux pass through

the defected zone rounding the vortex areas. The trajectory

of resonance energy passing is clearly visible in Fig. 7,

which gives examples of energy streamlines and power den-

sity distribution for the elastic layer with three thin rigid

inclusions (l ¼ 0:3, d ¼ 0:3, Dx ¼ 4) at the nonresonance

blocking frequency x ¼ 0:98 (top) and at the resonance

‘‘open up’’ frequency xp ¼ Rexn ¼ 1:15 (bottom). In the

power density subplot (d) the getting-through energy flux

goes along the piecewise-linear saw-shape gray path bounc-

ing between the horizontal waveguide’s boundaries.

Thus, in the case of more than one obstacle, the nearly

real spectral poles xn, causing resonance wave transmission,

may appear not only near the resonance gap ranges inherent

for a single obstacle, as it was shown in the crack example

above. They also appear in a nonresonance blocking range,

where no poles are present with one obstacle as in the rigid

inclusion examples. In the latter, the pass peaks pop up at

the almost zero part of the jþðxÞ plot (Fig. 8). Moreover,

those peaks look as twin peaks, indicating the presence of

double poles located close to each other. Indeed, besides the

pole x1 ¼ 1:150� i0:009, which opens the waveguide at

xp ¼ 1:15 in Fig. 7, there exists one more nearby pole x2

¼ 1:037� i0:015 yielding the left pass peak at xp ¼ 1:039

(Fig. 8). Resonant pass peaks in the case of three cracks

[Fig. 5(b) from Ref. 13] also look like twin peaks.

It should be mentioned that resembling pop-up appear-

ance of pass peaks is inherent to 1D waveguide structure of

various physical nature. For example, an unexpected reso-

nant transmission peak appears in a gap band of a magneto-

photonic structure combined of two ones separately

possessing the full blocking abilities (Fig. 2 from Ref. 3).

C. Multiple poles and resonant pass peaks

The study of resonance phenomena in 2D waveguides

with multiple hidden defects (both cracks and inclusions)

has revealed the following fact: the number of resonance

poles xn located near gap ranges increases in parallel with

M. Subsequently, the number of high quality peaks indicat-

ing resonant transmission at the frequencies xp � Rexn also

increases as M grows. As an example, Fig. 9 displays a series

of plots jþðxÞ for different sets of the same thin rigid inclu-

sions (l¼ 1, d ¼ 0:25, Dx ¼ 4, M ¼ 1; 2; :::; 5). The fre-

quency range 0:9 < x < 1:5 in this series is taken narrower

than in Fig. 8 to focus on the changes of pass peaks in one

group. These plots are supplemented by Table I that displays

the pass-frequencies xp [i.e., the points of jþðxÞ local max-

ima], the spectral points xn obtained from characteristic

equation (2), and the eigenfrequencies xFEM
n found using

FEM for finite specimens cut out from the infinite wave-

guide. The real parts of xn are also shown in the figure by

arrows. The curves in the subplots of Fig. 9 and the values

presented in Table I are in good agreement confirming the

conclusion made about the role of resonance poles in the

waveguide opening up.

FIG. 5. (Color online) The transmission coefficient jþ for two elliptic rigid

inclusions as a function of the depth d2 and the frequency x (left) and a

zoomed cut for d2 ¼ 0:14 (right bottom).

FIG. 6. (Color online) Eigenfrequencies

and eigenforms juz;nðx; zÞj of a finite elastic

specimen with two rigid elliptic inclusions.
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Similar connection between the allocation of spectral

poles and comb-like patterns of transmission coefficient

plots is known for 1D waveguides with multiple scatterers.8

A close 1D analogous to the 2D waveguide considered is a

spring supported string with pointwise defects. The deriva-

tion and analysis of the string solution, as well as the mean-

ing of defect parameters, are particularized in Ref. 12. The

frequency spectrum wðx;xÞ of vertical spring oscillation

also has poles in the x-plane. Several examples of their dis-

tribution for periodic sets of defects are shown in Fig. 10.

There are two types of defects spaced with the step Dx ¼ 1

and specified by the parameters am ¼ �0:5 and em ¼ 0 (top

subplots) and am ¼ 0 and em ¼ 10 (bottom subplots). In the

first set, negative values of the parameters am decrease the

string’s cross section, hence the defects may be roughly

treated as transverse cuts (cracks). In the second set, positive

em yield additional bending stiffness at the defect points,

similar as in a layer with rigid inclusions.

The circle markers in the left subplots of Fig. 10 point

out the pole location in the case of two defects (M¼ 2). For

the defects of both types the poles go along the real axis with

the period Rexnþ1 � Rexn � p=Dx, rising up to the axis as

Rexn increases, in the first case, and going down for the sec-

ond set of defects. With a larger number of obstacles, the

groups of M� 1 poles appear above these marked by circles

places moving up closely to the real axis as M increases in

both cases. The right subplots demonstrate zoomed patterns

of such pole groups for M ¼ 10; 20 and 40 defects. In both

cases they are arranged along arch-down curves that are

pulled up to the axis as M!1.

It is interesting that the arch-down pole patterns are

practically the same as those shown in Figs. 1 and 2 from

Ref. 8 for a 1D quantum system governed by the Schrö-

dinger equation. Moreover, the poles obtained for 2D models

(in particular, the poles given in Table I) also lie on arch-

down curves.

In the first case (jamj 6¼ 0, top subplots), the segments of

the real axis, to which the pole groups approach, are sepa-

rated by increasing intervals so that these bands shrink in

FIG. 7. (Color online) Energy

streamlines (left) and power density

jeðx; zÞj (right) in the cases of nonre-

sonant blocking (top) and resonant

passing (bottom) by three thin rigid

inclusions.

FIG. 8. (Color online) The transmission coefficient jþðxÞ for three rigid

inclusions (as in Fig. 7) with popping up resonance peaks at xp � Rexn.

FIG. 9. (Color online) Appearance of additional resonant transmission

peaks with increasing number of rigid inclusions M.
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points as x!1. In the second case (em 6¼ 0, bottom sub-

plots), on the contrary, such bands increase as x!1 so

that the intervals between them shrink in points.

The plots jþðxÞ for strings with M ¼ 2;5, and 20

defects of two selected types are shown in Fig. 11 by solid

lines (the left and right subplots, respectively). The dashed

curve at each subplot shows jþðxÞ for the case of the same

single defect (M¼ 1). It is clearly seen how the pass bands

are formed out of the thickening sub-peaks centered just

above the nearly real complex poles assembled in arch-down

groups, as it is shown in Fig. 10. In accordance with the pole

allocation the sub-peaks flood in the pass bands as M
increases. With the infinite number of periodic defects

(M ¼ 1) the bounds of the pass and stop bands can be esti-

mated using the Bloch-Floquet formalism.1 As expected, it

has yielded the same bands as those obtained for large M
within the model considered.

As mentioned above, similar transmission peaks have

been observed for one-dimensional wave propagation in var-

ious structures with finite sets of obstacles. For example, the

transmission plot given in Fig. 6 from Ref. 9 for a phononic

lattice looks quite similar to the right subplots of Fig. 11.

They are also composed of groups of multiple sub-peaks

reaching the limiting value jþ ¼ 1, the peaks in groups re-

stricted from below by white arches and separated by strong

stop bands. Though in the most known examples for wave-

guides with finite sets of scatterers, their spectral properties

have not been analyzed, most likely, the pass and gap band

phenomena in all these and many other cases described in

acoustics and physics literature are also closely connected

with the patterns of natural pole allocation.

As for the 2D elastic waveguides considered above, the

transmission peaks located above the nearly real spectral

poles xn also form pass bands if the number of obstacles

increases. In Fig. 9 the developing pass bands are shown by

white background, while the shaded areas indicate remaining

gap bands. As the main distinction from 1D waveguides,

these peaks do not reach the maximal height jþ ¼ 1, i.e., the

resonance effect does not provide the full transmission in the

case. The right pass band (1:25 < x < 1:4) is associated

with complex poles located more distantly from the real axis

than those for the left band, that is why the related peaks are

much smaller.

This distinction may ensue from the difference in the

blocking-transmission mechanisms. In a 1D case it may be

explained by the in-phase or anti-phase superposition of

TABLE I. Pass frequencies xp, complex spectral points xn, and eigenfre-

quencies xFEM
n .

M xp xn xFEM
n

2 1.100 1:100� 0:027i 1.064

3 1.039 1:037� 0:015i 1.008

1.150 1:150� 0:009i 1.115

4 1.012 1:010� 0:008i 0.985

1.101 1:099� 0:013i 1.067

1.166 1:166� 0:004i 1.135

5 0.998 0:997� 0:004i 0.972

1.064 1:063� 0:010i 1.032

1.133 1:132� 0:008i 1.099

1.174 1:173� 0:002i 1.143

FIG. 10. (Color online) Allocation

of nearly real poles xn in the x-

plane for M evenly spaced string

defects.
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scattered waves enabling full transmission or full blocking,

respectively. Hidden obstacles in a 2D waveguide do not

interlap with its cross section, hence, certain wave fluxes

passing around them may exist. Therefore, the mechanism

cannot be reduced to a simple superposition of waves propa-

gating straightforward along the layer. Instead, energy fluxes

enveloping obstacles over fancy trajectories control these

effects. With one obstacle, the resonance oscillation at a

near-spectral frequency gives rise to large energy vortices

shutting down the waveguide, while with multiple defects

the resonance perturbation at xp � Rexn changes and

realigns the vortex structure, opening up the waveguide in a

narrow band.

It should be mentioned that some 2D waveguides may

exhibit resonance patterns inherent to 1D ones. For example,

the plots of transmitted energy flux ratio for Lamb wave

propagation in an elastic layer with periodic rectangular sec-

tions of different material properties16 show bands of multi-

ple full transmission peaks alternating with full stop bands,

just as in Fig. 11 for the string model. Unlike to cracks and

inclusions, here the inhomogeneities completely dam up the

cross section and the pass-block effects appear the same way

as in a 1D defected string.

V. CONCLUSION

Based on the analysis of wave transmission through

defected zones in 2D elastic waveguides and of the alloca-

tion of natural resonance poles xn in the complex frequency

plane, the following inferences can be made:

(1) with single-obstacle waveguides the appearance of

nearly real spectral points xn is featured by blocking

effects accompanied by the wave energy localization in

the form of energy vortices

(2) with multiple obstacles the gap bands associated with ev-

ery separate obstacle are joined together, but a high-

quality resonant transmission takes place at the pass fre-

quencies xp � Rexn inside the blocked ranges, just as in

the case of 1D wave propagation; the trajectories of pass-

ing fluxes go around the energy vortices appearing near

the obstacles

(3) if the number of defects M � 2, the nearly real poles

xn—and thus the pass peaks above them—assemble in

groups; as M increases, the poles concentrate within fi-

nite frequency ranges and the related pass peaks develop

into pass bands.

FIG. 11. (Color online) Plots jþðxÞ for

wave transmission through M ¼ 2; 5, and

20 string defects of the first (left) and sec-

ond (right) kinds.
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