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a b s t r a c t

An electromechanical system consisting of an elastic waveguide and flexible symmetrically arranged
piezoelectric patch actuators attached to both of its surfaces is considered. In the mathematical model
employed, which takes into account both the dynamic contact interaction of the patch with the waveguide
and the presence of higher modes of oscillation of the layer, the effect of the geometrical and physical
parameters of the system on the amount of energy delivered by the piezoelectric actuators in the substrate
and its distribution between the excited Lamb waves is investigated. The analysis is carried out using the
solution of a system of integro-differential equations, to which the boundary-value problem considered
is reduced. In particular, it is shown that the maximum radiation of energy, transferred by antisymmetric
and symmetric normal modes, is reached when the width of the patch is equal to a half-integer number
of wavelengths of one of the normal modes of the patch-layer-patch triple-layer structure.

© 2011 Elsevier Ltd. All rights reserved.

Electromechanical systems with piezeoelectric actuators and sensors, constructed in the form of thin and flexible surface patches or
nternal layers in waveguide structures, are the basis of modern automatic control systems, which dynamically change the mechanical
roperties of materials and structures.

Since piezoelectric patch actuators are often employed to observe the state of thin-walled structural components, models have mainly
een developed for low-frequency flexirural and longitudinal oscillations, excited by them in beams, plates and shells (see, for example,
he review in Ref. 1). However, these models do not work when the wavelength is comparable with the waveguide thickness and do not
nable one to describe the excitation of higher modes. This leads to the need to set up more complex models, in which higher modes of the
lastic waveguide and the dynamic contact interaction of the flexible deformable patches attached to it are taken into account. The contact
nteraction of surface piezoelectric patch actuators with an elastic half-space has been analysed (see, for example, Refs 2-6). The case of a

aveguide of finite thickness was considered.7–9 A detailed analysis of the results obtained up to the present time can be found in Ref. 10.
The excitation of travelling waves by thin flexible piezoelectric patch actuators attached to one of the surfaces of an elastic waveguide

r to the surface of a half-space was investigated in Refs 8 and 9 using an integral approach,11 and the problem of generating selective
irectional radiation of the required mode in it was considered. In particular, resonance modes of energy radiation were found, which
rise when the width of the patch actuator is equal to a half-integer number of wavelengths of one of the waves, excited in a double-layer
atch-elastic waveguide structure.

Continuing these investigations, the previously developed approach is here extended to the case of symmetrically arranged piezoelectric
lements on both surfaces of an elastic layer (Fig. 1), which is often encountered in practical applications. This arrangement enables both
ymmetrical and antisymmetrical oscillations to be excited by applying an electrical load to the patch actuators in-phase or antiphase
espectively. Below, as far as possible, we will retain the notation previously employed and we will only omit some details of the general
ethod of solution. For brevity, we will consider the example of a single pair of patch actuators; the solution obtained can be extended to

he case of several pairs of patch actuators as was done previously in Refs 8 and 9.

In engineering practice, the generally accepted model12 is considered, in which the amplitude-frequency characteristics of the Lamb

aves excited by the piezoelectric actuator are determined without solving the contact problem. In this model the action of the patch
ctuator is modelled by a pair of concentrated shear forces, applied to the surface of the waveguide on the edges of the actuator. This
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Fig. 1.

odel is not suitable for analysing the stress-strain state in the contact area, but gives the correct relation between the amplitudes (and,
orrespondingly, the energies) of the excited fundamental modes in the frequency band up to the occurrence of the third (the first higher)
ode. This is indicated, in particular, by a comparison with the numerical results obtained by solving the contact problem for a thin flexible

ctuator.9 Obviously models in which the action of the patch on the substrate is described in terms of the solution of the contact problem
onsiderably extend the frequency range of their applicability, thereby making it possible to carry out a wave-energy analysis in the case
hen several higher modes are excited.

In this paper we use the same model of the piezoelectric actuator as previously in Refs 8 and 9. The equations of the longitudinal (i.e.,
angential to the waveguide surface) displacements and deformations of the patches are derived from the general equations of coupled
inear electroelasticity, using certain conditions and constraints. The main one of these is the assumption that the thickness of the patch
ctuator is relatively small compared with its width, which enables us to regard it as a flexible strip in which the transverse stresses
re negligibly small compared with the longitudinal stresses. These assumptions enable us to simplify the model while preserving its
ain advantage compared with the model described in Ref. 12, namely, the contact interaction of the elastic-deformed patches with the

eformable substrate is taken into account. The simplifying assumptions and the limitations of the range of applicability following from
hese are described and discussed in more detail below.

. The mathematical model of the interaction of a piezoelectric actuator with an elastic waveguide

We will consider, in the two-dimensional formulation (plane deformation), a uniform isotropic elastic layer of thickness h: − ∞ < x < ∞ ,
h ≤ z ≤ 0, to the upper and lower surfaces of which flexible piezoelectric patch actuators of thickness h0 and width 2a are attached (Fig. 1).

he material of the patch actuators belongs to the 8 mm symmetry class,13 where, for the upper actuator it is polarized in the direction
f the z axis, while for the lower one it is polarized in the opposite direction. Outside the contact region |x| ≤ a, z = 0 and |x| ≤ a, z = − h the
urfaces of the waveguide are stress-free. Steady harmonic vibrations in the layer u(x, z)e−i�t (u = (u = ux, uz)T is the complex amplitude
f the displacement vector) are excited by the unknown contact voltages q1e−i�t and −q2e−i�t, which occur under the upper and lower
ctuators as a result of their deformation when an alternating electric potential difference �n = ± (Vn/2)e−iωt(n = 1, 2) is applied to the
lectrodes. The harmonic factor e−i�t will henceforth be omitted and the system will be described in terms of the complex amplitudes of
he corresponding quantities.

The wave field u(x, z), excited in the elastic layer by the pair of actuators considered, satisfies Lamé’s equations

(1.1)

nd the boundary conditions

(1.2)

ere � and � are the Lamé constants of the layer, � is its density and � = (�xz, �z)T is the stress vector on the horizontal surface. We must
lso satisfy the radiation conditions, which follow from the limit-absorption principle.11

Boundary-value problem (1.1), (1.2) is open, since unknown contact voltages qn = (qx,n, qz,n)T(n = 1, 2) occur in the boundary conditions.
hey must be determined from the simultaneous solution of the equations of motion for the layer and the patch actuators, connected by
ommon contact conditions.

The displacement vectors un = (ux,n, uz,n)T for the upper actuator (n = 1) and the lower actuator (n = 2) satisfy the equations, which follow
rom the equations of motion:

(1.3)

he equations of electrostatics

(1.4)

nd the equations of state, which express the relation between the mechanical stresses and strains and the electric field strength, and also

he electric induction:

(1.5)
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(1.6)

Here �x,n, �xz,n, �z,n and 	x,n, 
xz,n, 	z,n are the components of the stress and strain tensors in the actuators while Dx,n, Dz,n and Ex,n,
z,n are the components of the electric field strength and the electric induction vectors in them, cij, eij and ∈ij are the elastic moduli, the
iezoelectric constants and the permittivity coefficients of the material of the actuator and �0 is its density.

Equations (1.3)–(1.6) are reduced to equations in terms of the components of the displacement vectors un and the electric potentials
n when the Cauchy relations

(1.7)

and the expressions for the electric field strength

(1.8)

re substituted into them.
The boundary conditions (written here, for brevity, solely for the upper actuator) consist of the conditions for there to be no stresses

n its outer surface

(1.9)

(1.10)

nd the continuity of the displacement and stress field �1 = (�xz,1, �z,1)T in the region where the actuator is in contact with the layer

(1.11)

o these we must add the conditions on the horizontal electrode surfaces of the actuator

(1.12)

nd on the faces of the piezoelectric elements

(1.13)

The thickness of the piezoelectric actuators used in practice, as a rule, is considerably less than their horizontal dimension (h0 � 2a),
.e., the longitudinal extension compression deformations 	x and the related stresses �x predominate. Moreover, we will not consider the
igh-frequency band, in which the characteristic wavelength �0 would be commensurable with the thickness h0. Hence, to simplify the
quations of motion of the actuators we will use the following assumptions:

) the components of the displacements and stresses ux,n, uz,n and �x,n are constant over the thickness of the patch actuator (which is
applicable in the frequency band in which h0 < �0/8);

) the electric field is constant over the width of the patch and is directed perpendicular to its surface: Ex,n = 0, Ez,n = Vn/h0;
) the patch is relatively thin h0 � a, and hence does not resist bending, i.e., in the contact area �z = 0.

The use of the first approximation enables us to integrate the first of the equations of motion (1.3) over the thickness of the actuator
nd reduces it to the form

(1.14)

It enables us to simplify the equation of state (1.5):

(1.15)

Hence, taking the first of conditions (1.10) and the second assumption into account, we obtain

(1.16)

here
�n = ux,n are the longitudinal displacements in the patch actuators and qn = qx,n are the unknown contact shear stresses. The third
ssumption enables us to simplify the patch-layer contact conditions (1.11) and reduce them to the form

(1.17)



2

i
t

H

k
r
a
p

o

i
o

s

3

H
s

w

i

s

Ye.V. Glushkov et al. / Journal of Applied Mathematics and Mechanics 75 (2011) 56–64 59

. The system of integral equations

For the displacements u, produced in the elastic layer by the surface loads, defined by the first two conditions of (1.17), the following
ntegral representation in the form of a convolution of Green’s matrix with the surface stresses qn or, in equivalent form, an inverse Fourier
ransformation of the product of their Fourier-symbols, holds11

(2.1)

ere

n = (kn,11, kn,21)T(n = 1, 2) are the first columns of Green’s matrix of the elastic layer with the load, applied to the upper and lower boundaries
espectively, and is the Fourier transformation operator with respect to the x variable. The contour of integration � passes along the real
xis, deviating from it into the complex plane when it passes around the real poles of the integrands in accordance with the limit-absorption
rinciple.

The elements of the Fourier-symbols of Green’s vector functions in the case considered can be written in the explicit form

(for the form of the functions M1, S1 and � see, for example, Ref. 8).
Substituting representation (2.1) into the displacement continuity conditions, defined by the third and fourth conditions of (1.17), we

btain the following system of integral equations

(2.2)

Here

In view of the fact that, as ˛→ ∞, the function K1(�) decreases as �−1, while K2(�) decreases exponentially, the diagonal operator K1
s singular with a logarithmic singularity of the kernel k1(x) (as in contact problems for a rigid punch on an elastic base), while K2 is an
perator with a smooth kernel, which describes the mutual effect of the actuators.

Since the right-hand side v of the system of equations obtained is an unknown vector function, the problem can only be solved by
imultaneous solution of Eqs (1.16) and (2.2), taking the boundary conditions in problem (1.16) into account.

. Discretisation of the problem

To solve the integro-differential problem obtained numerically we will use the method proposed earlier in Ref. 14 of reducing Wiener-
opf integral equations with a meromorphic symbol of the kernel to an infinite system of linear algebraic equations. Following the general

cheme of the method, the matrix integral operator (2.2) is underdefined over the whole real axis of the unknown vector-function

(3.1)

hich enables us to apply a Fourier transformation with respect to x to it. As a result we arrive at the following matrix functional equation

(3.2)

n terms of the Fourier-symbols of the corresponding functions.
Closure of the contour � in the integrals which occur in the definition of the operator K (see formula (2.1)), and replacement of their

ums by residues, leads to the representation of the function �(x) in the form of series

(3.3)
with unknown constant coefficients

(3.4)
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in which

nd �k is the pole of the function Kn(�) (the zeros of the denominator �(�)), situated above the contour �; the upper signs are taken for
> a and the lower signs for x < − a. Consequently,

(3.5)

Equation (3.2) contains three unknown vector functions: Q, V and �. To eliminate one of these we use the relation which is obtained
fter applying a Fourier transformation to Eqs. (1.16), underdefined along the whole x axis by zero. Taking into account the rule for a Fourier
ransformation of the derivatives of discontinuous functions, we have

(3.6)

Here G = G(˛) = 1/(−˛2 + 2
0) is the Fourier symbol of the fundamental solution of Eq. (1.16) and E is the unit 2 × 2 matrix,

(3.7)

(3.8)

±
0 = (t±

10, t±
20)T is a column vector, composed of the unknown constants t±

n0 = �n(±a)(n = 1, 2) and e = (e1, e2)T is the known column vector
f the control parameter of the electromechanical system (see Eq (1.16)).

It follows from (3.2) and (3.6) that

(3.9)

Here the inverse matrix is written in explicit form

(3.10)

here 0 is the wave number of the longitudinal vibrations of the piezoelectric patch actuator (see Eqs (1.16)), and 1 and 2 are the wave
umbers of the longitudinal and transverse waves of the elastic layer.

The vector function Q is wholly in the complex plane � (like the Fourier transformation of the vector function q, specified in the limited
egion |x| ≤ a), and hence the poles ±zl and ±�k, guided by the zeros of the functions �(�) and �(�), introduced into the numerator of
epresentation (3.9), must be eliminated. To do this it is necessary to satisfy the conditions

(3.11)

In view of the equality detL = Q, the rows of the matrices L(± zl) and L(± �k) are linearly dependent, and hence, for fixed values of l and
, each pair of conditions (3.11) gives only one independent relation. Their combination is an infinite system of linear algebraic equations
n the column vectors sk = (s+

k
, s−

k
). Further steps (the derivation of the final form of the elements of the matrix of the system and its

egularization by taking into the account the asymptotics of the unknowns sk as k→ ∞) do not differ in principle from those described
arlier in Refs 8 and 14.

After finding the unknown s±
k

, the Fourier-symbol of the column vector of the unknown contact stresses Q, taking relations (3.5)-(3.9)
nto account, can be rewritten in the form

(3.12)

The components of the vector function C± have a non-exponential behaviour in the complex plane, which enables Jordan’s lemma and

auchy’s theorem to be used to represent the unknown contact stresses
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n the form of the series

(3.13)

here

o do this we first split the vector-function Q into two integrals, corresponding to its exponential behaviour (3.12) and the closure of the
ontour � on the side on which the exponent decreases. The poles ± zl in this case becomes irremovable and make a contribution to the
orm of the sum of the residues (3.13).

Remark. The scheme described can also be used for elastic multilayer waveguides, for example, when modelling the interaction of the
atch actuator with laminated composite materials. To do this one only requires the symbols of Green’s matrices K(�, z) and the poles zl
nd �k, the algorithms for constructing and searching for which are well developed at the present time.

. Numerical analysis: the structure of the wave fields and resonances

After finding the contact stresses q, the wave field u in the layer is determined from integral representation (2.1). For |x| > a the closure
f the � contour in the integrals present here and their replacement by the sums of residues leads to the representation of u in the form
f an expansion in normal modes of the elastic layer:

(4.1)

The upper signs in each of the terms are taken for x > a and the lower signs for x < − a. Then travelling waves, departing to infinity without
ttenuation with phase and group velocities cp,k = �/�k and cg,k = d�/d�k correspond to the first N1 real poles �k in the expansion, whereas
xponentially attenuating waves correspond to the complex poles �k.

When |x| ≤ a it is first necessary to split each of the integrals in relations (2.1) into two corresponding to the exponential behaviour of
he column vector (3.12), as was done when deriving formula (3.13), and then close the contour in the required direction and replace the
ntegrals by the sums of residues. Finally, we arrive at a representation of the wave field in the layer between the actuators in the form of
he superposition of travelling and attenuating waves with wave numbers zl for the normal modes of a triple-layer actuator-layer-actuator
tructure

(4.2)

xamples of the real branches of the dispersion relations of an elastic layer �k(�) and a triple-layer actuator-layer-actuator structure zl(�)
re shown in Fig. 2 for antisymmetrical modes (the upper part of Fig. 2) and symmetrical modes (the lower part). All the numerical results
ere and below are presented in dimensionless form, in units expressed in terms of three basic quantities: the thickness h (for the linear
imensions), the velocity of the S-waves vs and the density � of the waveguide. Here the dimensionless angular frequency � = 2�fh/�s,
here f is the dimensional frequency in hertz. The elastic properties of the layer when vs = 1 are determined by Poisson’s ratio � = 0.3. The
imensionless parameters of the actuators are

The parameter a is varied in the numerical examples.
In addition to the excited displacements u, an important characteristic of an electromechanical system is the energy flux E0 applied

rom the source (the actuator system) into the waveguide, averaged over the period of the oscillations. By replacing the contour integrals
y the sum of residues we can represent the quantity E0 in the form of the sum of averaged energy fluxes E±

k
, removed to the right and to

he left to infinity by each of the travelling waves individually (for more detail see, for example, Refs. 8 and 11):

(4.3)

(4.4)
It is important to note that, in view of the linearity of the problem, the contact stress vector can be represented in the form

(4.5)
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here qA and qS are common vectors of the contact stresses, which occur for antisymmetrical excitation (e1 = 1, e2 = −1) and symmetrical
xcitation (e1 = 1, e2 = 1) of the piezoelectric elements respectively. A similar splitting holds for the wave field u and hence

(4.6)

here E±
k,A

and E±
k,S

are the energy fluxes E±
k

averaged over the vibration period, removed to the right and to the left to infinity by the k-th
ormal mode of the elastic layer for antisymmetrical and symmetrical excitation of the piezoelectric elements.

Hence, we have

(4.7)

summation is carried out over the numbers of antisymmetrical and symmetrical normal modes respectively). It follows from relations
4.6) and (4.7) that the behaviour of the system considered for the antisymmetrical and symmetrical methods of excitation of the actuators
ompletely determines its properties for an arbitrary method of excitation.
One of the important problems in practice is the choice of the size of the actuator which will ensure maximum radiation of the wave
nergy E0, EA or ES. Examples of the dependence of these quantities on the half-width of the actuator a for a fixed frequency � = 2 (the
wo-mode regime) and for � = 5.5 (four-mode radiation) are shown in Fig. 3. For � = 2 the relations EA(a) and ES(a) are strictly periodic, and
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hey reach their maximum values when

(4.8)

here �l = 2�/�l is the wavelength of the fundamental antisymmetrical mode a0 or the symmetrical mode s0 (for EA or ES respectively). The
alues of a, calculated from (4.8), are shown in Fig. 3 by the circle markers. As in the case considered previously, the positioning of the actu-
tors on only one side of the waveguide,8,9 and the occurrence of these maxima can be explained by the total addition of the amplitudes of
he corresponding fundamental modes, excited by two point sources, situated on the edges of the actuators and operating in antiphase (i.e.,
n the approximation, employed in the model12 where the contact stresses were represented by the expressions qn = en[�(x − a) − �(x + a)],
= 1, 2). This addition occurs when the distance between the sources 2a is equal to a half-integer number of wavelengths � (condition

4.8). If the width of the actuator 2a is equal to an integer number of wavelengths, excited in antiphase, the total amplitude is equal to zero
nd, for the corresponding values of a, minima are observed on the graphs of EA(a) and ES(a).

The coincidence in the positions of the maxima and minima of the piezoelectric actuator power, obtained in the rigorous solution of
he contact problem, for values of a in the two-point approximation of its action on the layer indicates the low sensitivity of this integral
haracteristic, like the radiated energy, to the specific form of the distribution of the contact stresses inside the contact area, if the inherent
wo-mode range predominant concentration of the contact stresses on the edges of the actuators is ensured. The applicability of the

odel12 in the two-mode range, in particular, is explained by this.
The contact stresses have a root singularity at the edges of the contact area

or all �. Hence, the mechanism of the addition or annihilation of the waves, excited by the edges of the actuators, continues to act at high
requencies also. However, when higher modes (� > �) appear, it becomes unclear which of them makes the main contribution to the flux
f radiated wave energy, i.e., which of the poles zl must be taken to determine the optimum dimension a from formula (4.8). A numerical

nalysis shows that, as for the actuators considered previously in Refs 8 and 9, as � increases, the role of the fundamental mode transfers
n turn from the fundamental mode to the next in order higher mode. The corresponding parts of the branches of the dispersion curves
l(�) are shown in Fig. 2 by the circle markers. As the frequency � increases, they align themselves along a certain line, the direction of
hich, as previously,8,9 is determined by the wave number of the Rayleigh-type surface wave in an elastic half-space, coated with the thin
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lm considered. The values of a, calculated at the markers of the pole zl indicated agree well with the maxima of the energy EA and ES (see
ig. 3).

It should be noted that exceptions to this general rule for determining the resonance dimensions of the actuators are encountered in
arrow frequency bands in the neighbourhood of the cutoff frequencies, at which new real branches of the functions zl(�) appear. Usually,
he number of real zl and �k, corresponding to antisymmetrical or symmetrical normal modes, is different (for example, in the case of
ntisymmetrical excitation, formula (4.8) does not give dimensions which agree with the resonance width of the actuator 2a in the range
.3 < � < 3.2).
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