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Abstract

A low-cost computer model for ultrasonic detection of arbitrarily shaped and oriented

planar cracks in an elastic half-space is presented. The model is based on the use of

the integral equation technique and asymptotics derived from the oscillate integrals. The

implementation of the method are illustrated by numerical examples.

1 Introduction

Traditionally the data processing of ultrasonic non-destructive testing (NDT) has re-

lied upon ray methods of general diffraction theory similar to those used in geometrical

optics [1, 2]. In view of the asymptotic nature of the ray approach, it is used in the

high-frequency band, when the wavelength of the probing signal is much less than the

characteristic dimension of the defect. On the other hand, if the dimensions of the defect

are comparable with or less than the wavelength, reliable mathematical models become

particularly important, since the reflection in this case gives a very blurred image, which

requires special processing to size and shape the defect.

In this case a solution can be obtained by direct numerical methods like FEM, BEM

or Finite Differences. However, these methods are time consuming and fail to provide

insight into the mechanics of wave interaction processes.

The integral equation approach [3, 4] holds an intermediate position between the ray

and direct numerical methods combining their advantages. On one hand, it gives a numer-

ical solution like FEM, while being significantly less computationally intensive. On the

other hand, asymptotic derivation of the integrals gives the same physically significant ex-

pressions as the ray-based approaches, while retaining in contrast the critical information

about sources, structures and scatterers required for the reconstruction process.

Therefore, the integral equation method gives the chance to discover and explore

fine wave phenomena that are usually overlooked with other approaches. It allowed us

in particular to investigate the structure of time-averaged energy flows in layered and

stepped waveguides with energy vortices and backward fluxes [5, 6], as well as to clear up

their role in resonance extinguishing of surface waves [7].
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In this paper we present a low-cost computer model for ultrasonic detection of arbi-

trarily shaped and oriented planar cracks in an elastic half-space. The model is based

on the intensive use of the integral equation technique and asymptotics derived from the

oscillate integrals. Typically, there are three problems of self-dependent interest: 1) cal-

culation of an incident field u0, excited by a given source, 2) computation of the scattered

field u1, diffracted by some obstacles (cracks, inclusions, etc.), and 3) accounting for the

field u2, re-reflected from the sample surface, to be able to model a surface imprint of the

scattered waves (Fig. 1).
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Figure 1: Geometry of the problem

Within the integral equation technique, u0 is derived explicitly in terms of a convolu-

tion of the half-space Green’s matrix k with a given surface load q0 (see section 3 below),

while u1 and u2 are to be obtained through the numerical solution of the boundary in-

tegral equations (BIEs) arisen from satisfaction boundary conditions on the defect’s and

sample’s surfaces. There possible two situations: 1) a crack is deepened rather far from

the surface, so that these fields can be calculated via successive solutions of practically

independent diffraction (for u1) and reflection (for u2) problems; 2) with a near-surface

or surface-breaking crack the mutual influence of the fields u1 and u2 is so strong that

successive iterations are practically inapplicable and they have to be obtained, therefore,

simultaneously from a more complicated BIE, which matrix-kernel accounts strictly for

an infinite sequence of all re-reflections between the crack and half-space surfaces.

In the first case, the integral equations are well-known hypersingular BIEs with respect

to an unknown crack opening displacement (c.o.d.) v; their right-hand sides depend on the

incident field u0. The field u2 can also appear in the right-hand sides within a successive

specification of re-reflected fields. In this process the integral operator in the left-hand
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side of the BIEs remains the same to be an operator with a matrix-kernel l1 derived for

a crack in an unbounded elastic space (section 4).

There has been developed a variety of approaches to their numerical solution (e.g.

[9-13]) to be the key step of NDT models elaboration. To avoid the problem of kernel

singularity we use a variational Galerkin scheme in the Fourier transform domain with

the radial trial and test basis functions [13]. The far-field asymptotics of u1 (scattering

diagrams) are derived from the integral representation of the diffracted field via the c.o.d.

v.

As for the reflected field, it seems natural to use the laws of ray reflection from a

free surface [14] to obtain u2. However, more accurate asymptotics of u2 has also been

derived directly from the integral representation, which connects u2 with the incident on

the surface z = 0 field u1 explicitly (section 5). That explicit integral relation derived

for an arbitrarily inclined crack allowed us, in addition, to arrive at the BIE with a

modified kernel required in the second case of near-surface cracks (section 6). Its solution

assures rigorous satisfaction of the stress-free boundary conditions on the both crack and

half-space surfaces.

The model developed is illustrated by numerical examples of wave patterns and tran-

sient pulses acquired at the half-space surface (section 7).

2 Description of the Problem

Let us consider an elastic isotropic half-space containing an arbitrarily oriented and shaped

planar crack. In a global Cartesian coordinate system (x, y, z) the half-space occupies the

lower volume −∞ ≤ x, y ≤ ∞, −∞ ≤ z ≤ 0, while the crack is an infinitesimally thin

material discontinuity with traction-free sides in a plane domain (x1, y1) ∈ Ω, z1 = 0.

Here (x1, y1, z1) is a local coordinate system connected with the crack (Fig. 1).

With obvious modifications the mathematical technique used below is applicable with

any stratified medium which elastic constants are piecewise functions of z and does not

depend on horizontal coordinates x, y (e.g. for interface crack detection [15]). However,

for clarity sake we shall restrict our consideration to an isotropic homogeneous half-space.

The crack’s location and orientation in the global system is fixed by the coordinates

xc of the centre of the local system in the global one and by a rotation matrix C setting a

one to one connection between the coordinates of a point in the global (x) and the local

(x1) systems:

x1 = C(x − xc), x = xc + C1x1, C1 = C−1 (2.1)

The action of a probe (of an ultrasonic transducer) upon the medium is modeled by a

given time-harmonic load q0e
−iωt applied to the traction-free surface z = 0 in a contact

domain D:

τ (x)|z=0 =

{

q0(x, y), (x, y) ∈ D

0, (x, y) /∈ D
(2.2)

Here τ = Tzu = {τxz, τyz, σz} is a surface stress vector and D is a contact area between

the source and the tested sample; Tz = Tn with n = (0, 0, 1), where Tn is a stress operator
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which yields a stress vector τ relating to a field u at an area element fixed by a unit

normal n: τ = Tnu ≡ λndiv u + 2µ∂u/∂n + µ(n × curlu); λ, µ are Lamé parameters of

the elastic medium.

Depending on the type of the transducer, the contact area can be of different form

(elliptic, rectangle or even disconnected: D = ∪mDm for a system of sources). Function

q0 sets the load distribution in D depending on the source characteristics (longitudinal

or transverse, directional, inclined, etc). To model a realistic probe, q0 ought to be

chosen in accordance with the law of traction distribution in the interface between the

transducer and the tested material when it is caused by an incident plane wave coming

from the electrically excited beveled edge of the transducer’s piezo-crystal. This law is

easily derived if the effect of finiteness of D is neglected [14, 16]. Otherwise, q0 is defined

via solution of the Wiener-Hopf type integral equation, to which the contact problem is

reduced [4]. Furthermore, we consider q0 as a known function.

Since any transient pulse u(x, t) can be expressed as a linear superposition of the

harmonic solutions u(x, ω)e−iωt:

u(x, t) =
1

π
Re

∞
∫

0

u(x, ω)e−iωtdω, (2.3)

we start from the harmonic steady-state problem with a circular frequency ω, omitting

further the harmonic factor e−iωt.

The main idea of the proposed approach is to compose the total field u of the source

field u0, the scattered field u1 and the reflected field u2:

u = u0 + u1 + u2 (2.4)

using their explicit integral representations in terms of the half-space Green’s matrix k, a

given load q0, and an unknown c.o.d. v. In such a partition u0 is the wave field obeying

the boundary condition (2.2) at the half-space surface and the radiation condition at

infinity. It is continuous inside the half-space while the diffracted field u1 is discontinuous

at the crack with the jump (c.o.d.)

v = (u+
1 − u−

1 )|z1=0, (x1, y1) ∈ Ω (2.5)

Here u±
1 are parts of u1 at the different sides of the crack plane z1 = 0 written in the local

coordinates x1 (u+
1 for z1 ≥ 0 and u−

1 for z1 ≤ 0).

This field u1 alone does not meet boundary conditions, hence the reflected field u2

is introduced to comply the stress-free condition at the surface z = 0 remaining after

realization (2.2) by u0:

Tz(u1 + u2)|z=0 = 0 (2.6)

Then, the stress-free condition at the crack sides must be satisfied by the superposition

of all these three fields:

Tn(u0 + u1 + u2)|z1=0 = 0 (2.7)

Here Tn is the stress operator defined under (2.2) with n to be a unit normal to the crack

plane.

4



In line with the physical matter of the process, the field uc = u1 + u2 caused by the

presence of crack may be understood as an infinite succession of recurrent fields, diffracted

by the crack and reflected from the surface:

u1 = u
(1)
1 + u

(2)
1 + u

(3)
1 + · · ·

u2 = u
(1)
2 + u

(2)
2 + u

(3)
2 + · · ·

(2.8)

Here, u
(1)
1 is the field scattered by the crack in the whole space due to the u0 incidence;

u
(1)
2 is the reflected field due to u

(1)
1 incidence on the surface z = 0; u

(2)
1 is due to u

(1)
2

scattering by the crack, and so on.

With such a partition boundary conditions (2.6) and (2.7) also split up into a chain

of equalities with respect to subfields u
(i)
1 and u

(i)
2 , i = 1, 2, ... :

Tn(u0 + u
(1)
1 )|z1=0 = 0 Tz(u

(1)
1 + u

(1)
2 )|z=0 = 0

Tn(u
(1)
2 + u

(2)
1 )|z1=0 = 0 Tz(u

(2)
1 + u

(2)
2 )|z=0 = 0

· · · · · ·
Tn(u

(i−1)
2 + u

(i)
1 )|z1=0 = 0 Tz(u

(i)
1 + u

(i)
2 )|z=0 = 0

· · · · · ·

(2.9)

With a deepened crack and the Auld’s electromechanical reciprocity argument tech-

nique [17], in many cases it is quite enough to take into account only the first scattered

term u
(1)
1 to be able to simulate adequately scan-images measured in practice with probes

and/or receivers moving over the surface [16, 15]. A contribution of the next terms of

expansions (2.8) into the Auld’s argument δΓ becomes tangible only with near-surface

and surface-breaking cracks. In such a case the boundary element or boundary integral

equation approach is applied to obtain the scattered and reflected fields by simultaneously

satisfying boundary conditions (2.6), (2.7) at the sample surface and crack’s sides without

any recurrent chains of re-reflections [18, 19]. There is no need for any further terms in

this case, because the mutual influence of the scattered and reflected fields u1 and u2 is

taken into account strictly via BIEs.

A new need in the calculation of the summary field uc = u1 + u2 at the surface even

with deepened cracks grew recently out of the laser measurement technique (e.g. see

[20]). The laser acquirement of data from many surface points simultaneously is much

faster than by transducers, but to simulate those data one has to compute the wave field

uc at the surface instead of using Auld’s coefficient δΓ. With the laser measurements, a

procedure of the crack form reconstruction can be based upon a fast parametrical analysis

of the field |uc| patterns on the surface.

3 The Probe Field

3.1 Integral Representation

Let k(x) be a matrix which columns kj(x) are displacement vectors associated with the

surface point loads τ |z=0 = δ(x)ej, j = 1, 2, 3 and the radiation condition at infinity. Here
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δ is the Dirac function and ej are the unit coordinate vectors for the axes Ox,Oy,Oz

respectively. This matrix k is referred to as the half-space Green’s matrix. With the

matrix k any displacement resulted from a surface load, including the probe field u0, can

be expressed in terms of the convolution integral

u0(x) =
∫∫

D

k(x − ξ)q0(ξ, η)dξdη, ξ = {ξ, η, 0} (3.1)

Obviously, u0 complies with the boundary condition (2.2).

The Fourier transform technique allows one to derive half-space Green’s matrix in

terms of path Fourier integrals:

k(x) = F−1[K] ≡ 1

(2π)2

∫

Γ1

∫

Γ2

K(α1, α2, α, z)e
−i(α1x+α2y)dα1dα2 (3.2)

where α =
√

α2
1 + α2

2, matrix K = F [k] is the Fourier transform of k(x) over x, y (Fourier

symbol); by F and F−1 we denote direct and inverse transforms.

The contours Γ1 and Γ2 go in the complex planes α1, α2 along the real axes Imαn =

0, n = 1, 2, deviating from them for bypassing real poles and branch points of the matrix

K elements. The directions of the deviation are governed by the principle of limiting

absorption [4].

It is worthy to note that representation (3.1) – (3.2) remains valid with any piecewise

continuous dependence of elastic properties on z (e.g. for a multi-layered half-space or

a laminated plate). For an isotropic homogeneous half-space the symbol K is of the

following structure (in the conventional notation introduced by Vorovich and Babeshko

[4]): K = K− (K+ is for the upper half-space z > 0) and

K±(α1, α2, α, z) =
2
∑

n=1

K±
n (α1, α2, α)e−σn|z| (3.3)

with

K±
n =

1

∆









±i(α2
1Mn + α2

2Nn) ±iα1α2(Mn −Nn) −iα1Pn

±iα1α2(Mn −Nn) ±i(α2
1Nn + α2

2Mn) −iα2Pn

α1Sn α2Sn ∓Rn









M1 = iσ2 M2 = −iσ2γ
2/α2

P1 = −γ2 P2 = σ1σ2

S1 = iσ1σ2 S2 = −iγ2

R1 = −σ1γ
2 R2 = σ1α

2

N1 = 0 N2 = i∆/(µα2σ2)

(3.4)

∆(α) = 2µ(−γ4 + α2σ1σ2), γ2 = α2 − 0.5κ2
2

σn(α) =
√

α2 − κ2
n, κn = ω/vn, n = 1, 2;

v1, v2 are velocities of the longitudinal and transverse (P and S) body waves, κ1, κ2 are

corresponding wave numbers. The branches of the radicals are fixed in the complex plane

6



α by the cuts α(t) = ±
√

κ2
n − t2, 0 ≤ t ≤ ∞ and conditions σn(α) → ∞ as α2 → ∞, so

that no growing exponents occur in any K component as |α| → ∞ or z → −∞.

Functions Mn, Nn, Pn, Rn, Sn and ∆ in (3.3) depend only on α, therefore, the change

of variables
{

α1 = α cos γ

α2 = α sin γ

{

x = r cosϕ

y = r sinϕ

α =
√

α2
1 + α2

2

r =
√
x2 + y2

(3.5)

together with the Bessel functions representation [21]:

2πinJn(αr) =

2π
∫

0

eiαr cos γ−inγdγ (3.6)

brings (3.2) to a one-dimensional path integral form:

k(x) =
1

2π

∫

Γ

K(i∂/∂x, i∂/∂y, α, z)J0(αr)αdα. (3.7)

The contour Γ is resulted from Γ1,Γ2 in accordance with the change (3.5). It goes in

the complex plane α along the real positive axis Imα = 0, Reα > 0 also bypassing real

positive poles ζm and branch points κn of the integrands. With the homogeneous medium

considered, there is the only Rayleigh real pole ζ : ∆(ζ) = 0.

The multipliers α1, α2 are substituted in K by the space derivatives by virtue of the

one-to-one correspondence

αp1

1 α
p2

2 ↔
(

i
∂

∂x

)p1
(

i
∂

∂y

)p2

, p1, p2 = 0, 1, 2

Their acting on the Bessel function yields the Bessel functions again [21]:

∂
∂x
J0(αr) = −α cosϕJ1(αr),

∂2

∂x2J0(αr) = α2[(sin2 ϕ− cos2 ϕ)J1(αr)
αr

+ cosϕJ0(αr)], etc.

so that no derivatives remain in the final integral representation. It should be noted

that such representation can also be derived directly from (3.2) without derivatives in

(3.7), just by substituting sinp γ, cosp γ, p = 1, 2 into (3.3) accordingly (3.5) in terms of

exponents e±inγ , which are accounted then in (3.6).

3.2 Far-field asymptotics

The derived integral representation (3.1) – (3.7) is quite applicable for a direct numerical

obtaining of the incident field u0(x) in a near-field zone, where the distance from the source

R = |x| is commensurable with a wavelength l. However, the near-field is of little interest

for the crack detection, whereas computing expenses increase dramatically as R/l >> 1,

up to practical inapplicability at a certain distance. Therefore, the integral representation

is used mostly as the starting point for the derivation of far-field asymptotics.
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The contribution of the pole ζ, derived using the residual technique, yields the surface

Rayleigh wave:

uR(x) = b(ϕ, z)eiζr/
√
r +O(r−3/2) as r → ∞, z = const (3.8)

where b =
√

iζ/(2π)B(ϕ, z)QR(ϕ)

B = resK|α=ζ = K̂(−ζ cosϕ,−ζ sinϕ, ζ, z)/∆
′

(ζ)

K̂ : K = K̂/∆, QR = Q0(−ζ cosϕ,−ζ sinϕ)

Q0(α1, α2) = F [q0] =
∫∫

D

q0(x, y)e
i(α1x+α2y)dxdy.

Since uR(x) is localized near the surface (B(ϕ, z) decreases exponentially as z → −∞),

the contribution of uR in the total asymptotic expansion only matters for distant detection

of near-surface cracks. The deepened defects are illuminated by the body waves, which

asymptotics are derived from (3.1), (3.2) by the steepest descent method [5].

At first, the stationary points

α1,n = −κn cosϕ sinψ, α2,n = −κn sinϕ sinψ (3.9)

of the oscillating exponential components exp(i(
√

κ2
n − α2 − α1x − α2y)) contributes in

the asymptotics of the initial double integral (3.2) as follows:

k(x − ξ) =
2
∑

n=1

kn(ϕ, ψ)eiκnR/R +O(R−2) as R → ∞, (3.10)

kn = −iκn| cosψ|Kn(α1,n, α2,n, αn)/(2π)

R =
√

(x− ξ)2 + (y − η)2 + z2, ϕ, ψ are the radius and angles of a spherical coordinate

system centered at a current point (ξ, η, 0) :















x− ξ = R cosϕ sinψ

y − η = R sinϕ sinψ

z = R cosψ

0 ≤ ϕ ≤ 2π

π/2 < ψ ≤ π

Two terms of the sum (3.10) describe spherical P and S waves for n = 1 and n = 2

respectively.

Then, replacing the convolution integral (3.1) with an approximate cubature formula

with nodes (ξm, ηm) ∈ D, m = 1, 2, ...,M , we arrive at the body wave asymptotics of u0

in the half-space:

u0(x) ∼
2
∑

n=1

M
∑

m=1

kn(ϕm, ψm)q0(ξm, ηm)sme
iκnRm/Rm as Rm → ∞, ψ > π/2 (3.11)

in which ϕm, ψm, Rm are spherical coordinates of a point x in the systems centered at

points (ξm, ηm, 0); sm are cubature weight coefficients.
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4 The Scattered Field

With the set forth approach the scattered field u1 is represented in the same explicit inte-

gral form like u0, but via the unknown crack opening displacement v, which is determined

from the integral equations arising when the boundary conditions at the crack sides are

satisfied. Let q1 = Tnu1|z1=0 be a traction vector at the crack plane z1 = 0, associated

with the field u1 (in the local coordinates x1). This unknown field can be expressed via

q1 in the same manner as u0 through q0, i.e. using Green’s matrices k+, k− for the upper

and lower half-spaces z1 ≥ 0 and z1 ≤ 0. In the Fourier domain it takes the form

U±
1 (α1, α2, z1) = K±(α1, α2, z1)Q1(α1, α2) (4.1)

while (2.5) is converted into

V(α1, α2) = [K+(α1, α2, 0) −K−(α1, α2, 0)]Q1(α1, α2) (4.2)

V = F [v], Q1 = F [q1]

Equation (4.2) allows one to express Q1 through V:

Q1 = L1V, L1(α1, α2) = (K+ −K−)−1|z1=0, (4.3)

hence, q1 = F−1[L1V].

The integral equation with respect to unknown v follows then from the traction-free

boundary conditions (2.6) and (2.7). First, let us consider a deepened crack, when re-

reflections from far surfaces are neglected, that is when one can take u1 = u
(1)
1 (see (2.8))

without loss of accuracy. Only the first of the conditions (2.9) is required for determining

v = v(1) in this case:

(q1 + τ 0)|z1=0 = 0, (x1, y1) ∈ Ω (4.4)

Here τ 0 = CTnu0 is a known traction vector at the crack plane related to the incident

field u0, C is the rotating matrix from (2.1) giving coordinates τ 0 in the local system.

Eqs. (4.3) and (4.4) lead to the Wiener-Hopf integral equation

L1v ≡
∫∫

Ω

l1(x1 − ξ1)v(ξ, η)dξdη = g(x1, y1), (x1, y1) ∈ Ω (4.5)

where l1(x1) = F−1[L1], g = −τ 0|z1=0.

To solve eq. (4.5) with an arbitrary domain Ω, we use a variational Galerkin scheme

with axially symmetric (radial) δ-like trial and test functions fk set at the nodes (x1,k, y1.k)

covering Ω with a spacing h [13]:

v ≈ vN (x1, y1) =
N
∑

k=1

vkfk(x1, y1) (4.6)

vk are expansion coefficients, fk = f((x1−x1,k)/h, (y1−y1,k)/h), where f(x, y) = f(r), r =√
x2 + y2 is a radial shape function of the basis, N is a number of the nodes. Consequently,
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V(α1, α2) ≈ VN(α1, α2) = h2
N
∑

k=1

vke
i(x1,kα1+y1,kα2)F (α), (4.7)

F (α) = F [f ].

Unknown vectors vk are obtained from the linear algebraic system to which equation

(4.5) is reduced in line with the Galerkin scheme. The axial symmetry of f allowed us

to gain the most benefit in reducing numerical costs spent on v obtaining. With Green’s

matrices k± and expansion (4.6), integral representation of the scattered field u1 in the

crack coordinate system takes the form

u±
1 (x1) ≈

1

(2π)2

N
∑

k=1

∫

Γ1

∫

Γ2

U±
1,k(α1, α2, z1)e

−i(α1(x1−x1,k)+α2(y1−y1,k))dα1dα2 (4.8)

where U±
1,k = K±(α1, α2, α, z)L1(α1, α2)F (αh)vkh

2.

Far-field asymptotics follows from eq. (4.8) in the same way that asymptotics (3.11)

follows from eq. (3.1):

u±
1 (x1) ∼

2
∑

n=1

N
∑

k=1

a±
nk(ϕk, ψk)e

iκnRk/Rk, Rk = |x1 − x1,k| → ∞ (4.9)

a±
nk = −i| cosψk|κnh

2K±
nkLnkFkvk/(2π),

K±
nk, Lnk, Fnk are values of matrices and functions Kn, L1, F at the stationary points

α1,nk, α2,nk, αnk =
√

α2
1,nk + α2

2,nk, which are of form (3.9) again but with ϕk, ψk to be the

angles of the local spherical coordinate systems centered in the nodes (x1,k, y1,k, 0):















x1 − x1,k = Rk cosϕk sinψk

y1 − y1,k = Rk sinϕk sinψk

z1 = Rk cosψk

0 ≤ ϕk ≤ 2π

0 < ψk ≤ π

Asymptotics (4.9) gives a fairy simple and fast approximation of the scattered field by

the superposition of spherical P and S waves radiated by elementary sources located at the

nodes x1,k with amplitudes controlled by vectors vk. It is significant that representations

(4.8), (4.9) are also true if v is obtained from a general BIE taking into account the

influence of the reflected field u2 (e.g. from eq. (6.2) below).

We should add that the electromechanical reciprocity argument of Auld δΓ, which

gives the same information that is measured in pulse-echo scanning practice [17, 16], can

also be easily expressed through v:

δΓ = − iω
P

∫ ∫

Ω

v · g dΩ ≈ − iω
P
h2

N
∑

k=1

vk · gk (4.10)

gk = g(x1,k, y1,k), v · g =
3
∑

i=1

v(i)g(i)
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5 Reflection from the Surface

In regard to signals recorded at the half-space surface z = 0 we, in addition to the scattered

field u1, have to take into account the field u2 reflected from this surface. Along with

the possibility of obtaining u2 at the points of measurements using the well-known ray

formulae for quasi-plane P and S waves reflection from a free surface [14], it is possible

to express u2 through an auxiliary stress vector q2 = −τ 1|z=0 = −TzC1u1|z=0 induced at

the surface by the incident field u1. In Fourier symbols it takes the same form

U2(α1, α2, z) = K(α1, α2, z)Q2(α1, α2) (5.1)

with the same matrix K = K− like the representations of u0 and u1 above.

Hence, for a deepened crack we can derive the asymptotics required from the inverse

Fourier transform u2(x) = F−1[U2] similarly to asymptotics (3.8),(3.11) for u0, i.e. as

a contribution of integrand’s poles and stationary points of oscillating exponents. The

main problem here is to derive Q2 explicitly in the global coordinates starting from the

expression for u1 in the local ones.

For a horizontal crack this problem is solved easily. The axes of the global and local

coordinate systems can be taken collinearly, so that the derivatives, and consequently

the stress operator Tz, remain the same in the both systems. For an inclined crack the

mismatch of planes x1y1 and x, y, over which the Fourier transform is applied to u1 and

to τ 1, implies cumbersome analytical calculations. To avoid these difficulties, we propose

the next trick.

Let us, firstly, express u1 through the 3D Fourier integral:

u1(x1) =
1

(2π)3

∫

Γ1

∫

Γ2

∫

Γ3

Û1(α)e−i(α·x1)dα (5.2)

in which

Û1(α) = Fz1
[U1] ≡

∞
∫

−∞

U1(α1, α2, z1)e
iα3z1dz1

is a 3D Fourier symbol depending on the vector of Fourier parameters α = (α1, α2, α3); (α·
x1) = α1x1 + α2y1 + α3z1. Starting from eq. (4.1) we arrive at

Û1(α) = K̂(α)Q1(α1, α2) (5.3)

The explicit form of K̂(α) = Fz1
[K±(α1, α2, z1)] is easily derived in so far as the transform

Fz1
acts upon no more than two different simple functions of z1 entering in K±(α1, α2, z1)

of form (3.3):

Fz1
[e−σn|z1|] = 2σn/δn(α) and Fz1

[signz1 e
−σn|z1|] = 2iα3/δn(α)

where δn(α) = α2
3 + σ2

n = |α|2 − κ2
n, n = 1, 2. It results in the expression

K̂(α) =
2
∑

n=1

K̂n(α)/δn(α) (5.4)
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with

K̂n(α) =
2

∆(α1, α2)









−α3(α
2
1Mn + α2

2Nn) −α1α2α3(Mn −Nn) −iα1σnPn

−α1α2α3(Mn −Nn) −α3(α
2
1Nn + α2

2Mn) −iα2σnPn

α1σnSn α2σnSn −iα3Rn









, n = 1, 2

Then, we can pass in eq. (5.2) into the global coordinates by the rotation x1 =

C(x − xc) with the same rotation in the Fourier variables: α = Cβ, β = (β1, β2, β3).

With those substitutions the power exponent keeps its form:

(α,x1) = (Cβ, C(x − xc)) = (β,x) − (β,xc)

and vectors of Fourier parameters are also invariable in length: |α| = |β|, |β|2 = β2
1 +

β2
2 + β2

3 . In particular,

δn(α) = δn(β) = |β| − κ2
n = β2

3 + σ̂2
n(β)

here σ̂n(β) =
√

β2 − κ2
n, β

2 = β2
1 + β2

2 , n = 1, 2.

In the β domain application of the stress operator Tz is equal to multiplication by its

Fourier symbol

T (β) = −iµ









β3 0 β1

0 β3 β2

δβ1 δβ2 (δ + 2)β3









, δ = λ/µ

that is

τ 1(x) =
1

(2π)3

∫

Γ1

∫

Γ2

∫

Γ3

T (β)C1Û1(Cβ)e−i(β,(x−xc)dβ

The explicit form of Q2 = Fxy[−τ 1(x, y, 0)] is easily derived then in terms of one-fold

path integrals over Γ3, which taking into account (5.3), (5.4) and (4.3) can be written in

the following form

Q2(β1, β2) = − 1

2π

∫

Γ3

T (β)C1

2
∑

n=1

K̂n(Cβ)/δn(β)L1(Cβ)V(Cβ)ei(β,xc)dβ3

With the residual technique these integrals over β3 can be calculated as a contribution

of the poles β3 = −iσ̂n(β), which are the only roots of the denominators δn(β). As the

result we arrive at the explicit analytical expression

Q2(β1, β2) =
2
∑

n=1

M̂n(β1, β2)V̂n(β1, β2)e
i(β1xc+β2yc)eσ̂nzc (5.5)

where M̂n(β1, β2) = −T (β)C1K̂n(Cβ)L1(Cβ)/(2σ̂n)|β3=−iσ̂n
and V̂n(β1, β2) = V(Cβ))|β3=−iσ̂n

.

It is important to keep in mind that Q2 in the form (5.5) is derived for any crack,

therefore, it is valid not only for deepened cracks but for sub-surface and surface-breaking

ones too.
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Let xR = (xR, yR, 0) be a point on the surface z = 0 in which the reflected signal is

recorded. With regard to eqs. (5.1), (5.5) and (4.7) the inverse integrals for u2(xR) are

brought to the form

u2(xR) ≈ h2

(2π)2

2
∑

n=1

N
∑

k=1

∫

Γ1

∫

Γ2

K(β1, β2, β, 0)M̂n(β)F̂ (β)eσ̂nzkvke
−i(β1(xR−xk)+β2(yR−yk))dβ1dβ2

(5.6)

where xk = xc + C1x1,k are nodes x1,k ∈ Ω in the global system.

Then, the body-waves asymptotics of u2(xR) asRk =
√

(xR − xk)2 + (yR − yk)2 + z2
k →

∞ is derived from (5.6) by the same way as (3.11) for u0. It takes the form:

u2(xR) ∼
2
∑

n=1

N
∑

k=1

bnk(ϕk, ψk)e
iκnRk/Rk +O(R−2

k ), Rk → ∞ (5.7)

Here (ϕk, ψk, Rk) are spherical coordinates of the vectors xR − xk;

bnk = −iκn| cosψk|K(β1,nk, β2,nk, 0)M̂n(βnk)F̂ (βnk)vkh
2/(2π)/(−2σ̂nk)







βl,nk = −κn cosϕk sinψk, βnk =
√

β2
1,nk + β2

2,nk

β2,nk = −κn sinϕk sinψk

Thus, quite similarly to u1, at a far distance from the crack the field u2(xR) is added up

from spherical body waves radiated by elementary sources located in the crack domain

Ω at the nodes xk and controlled by the vector coefficients vk but with the angle vector-

functions bnk accounting in addition for the reflection from the surface z = 0 and crack’s

incline.

It is worthy to note that the contribution of the Rayleigh pole ζ into u2(xR) vanishes

exponentially as zk → −∞ due to the factors eσ̂nzk in the integrand (5.6).

6 Near-surface cracks

With near-surface cracks integral equation (4.5) fails to satisfy the total boundary condi-

tion on the crack sides due to a tangible influence of the reflected field. In this case the

integral equation has to be derived from the condition (2.7)

(q1 + CTnu2 + τ 0)|z1=0 = 0, (x1, y1) ∈ Ω (6.1)

instead of eq. (4.4). Since, in line with (5.1) and (5.5), Tnu2 is also expressed via v, the

resulting integral equation becomes of the form

L1v + L2v ≡
∫∫

Ω

[l1(x1 − ξ1) + l2(x1, ξ1)]v(ξ1)dξ1 = g(x1, y1), (x1, y1) ∈ Ω (6.2)

in which kernel l1 remains the same like in eq. (4.5) while the Fourier symbol of l2
is expressed via the part of Q2 (except v) multiplied by CTnK from the left. This
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equation takes explicitly into account all successive recurrent reflections from the crack

and boundaries which affect on the crack open displacement v.

If the crack does not touch the surface, the Fourier symbol of l2 decreases exponentially

as α → ∞ due to the Q2 structure. Therefore, in this case the kernel l2 is a smooth matrix-

function of x and ξ and the hypersingular kernel l1(x− ξ) remains to be the main part of

the integral operator, whereas, for a surface-breaking crack, the addition l2 also becomes

singular. Eq. (6.2), of course, is much more complicated than eq. (4.5). However, the

explicit form of the kernels provides a chance to develop and implement low-cost numerical

algorithms of its solution as well.

Figure 2: Transmission (solid line) and reflection (dot line) coefficients versus κsa for

inclined and vertical cracks accordingly to Ref. [19] and calculated using Eq. (6.2) (circle

marks).

In a 2D statement such a code has been created and tested against the numerical

results by Hijden and Neerhoff [19]. Figure 2 gives plots of the transmission and reflection

coefficients |T |2 and |R|2 for a Rayleigh wave diffracted by a sub-surface crack of width

2a, depth zc = −d and angle of inclination θ. There are plots versus κsa for an elastic

half-plane of Poisson’s ratio ν = 1/3 obtained in [19] also via BIEs but with another

form of the kernel representation. The results computed using eq. (6.2) (1D BIEs with

Ω ≡ [−a, a] in the case) are marked off by circles.

The agreement of the results verifies the correctness of the analytical calculations

above. Together with the numerical control of the boundary condition Tz(u1+u2)|z=0 = 0

it proves indirectly the validity of the asymptotics (4.9), (5.7), as well as of the uc = u1+u2

plots given below.
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7 Numerical examples

Since C-scan (pulse-echo) images computed for a probe moving across the surface were

already presented (e.g. [15]), in this section we will concentrate on uc surface patterns

and A-scan pulses obtained at different surface points with a fixed probe position. These

results are for deepened cracks when the first terms u
(1)
1 and u

(1)
2 provide a proper ap-

proximation of uc.

For definiteness sake, hereinafter all space sizes and distances are given in millimeters

and frequencies in megahertz, although these units of length l0 and of frequency f0 may

be changed simultaneously (e.g. to measure distances in wavelengths) just keeping the

inverse proportion l0 = const/f0.

At first, let us consider surface imprints of the scattered field diffracted by a circular

crack of radius 3 located under the co-ordinate origin (xc = yc = 0) at the depth zc = −60.

The incident field is radiated by a vertical 9 MHz P-probe: q0 = e3; (x0, y0) are the

coordinates of the center of the contact area D, which is a 2 × 2 square in the case.

A set of plots in Figs. 3-4 is for several probe positions from a remote one at (x0, y0) =

(−60, 0) up to (x0, y0) = (0, 0) above the crack with horizontal (θ = 0o, Fig. 3) and

inclined (θ = 45o, Fig. 4) crack’s orientation. They demonstrate how the patterns of the

amplitude of displacements |uc| at the surface z = 0 can look like depending on the probe

location and crack’s incline. The pictures are calculated in the plotted area 180 × 120

for a steel sample of P and S waves velocities vp = 5595 m/s and vs = 3230 m/s. The

integral equation were solved using 97 nodes in the expansion (4.6). Since the matrix

of the algebraic system, to which eq. (4.5) is reduced, can be inverted only one time,

computation of the field everywhere except the first point involves only asymptotics (4.9)

and (5.7) that is not too expensive. For example, these figures have been computed with

a 700 MHz Pentium-III PC with an averaged speed of 150 points per second.

Since measurements by a piezoelectric probe are comparatively slow, the A-scan tran-

sient signals are usually obtained at a few receivers’ positions with a fixed position of the

source. The electrical output at the receiver is modeled by Auld’s time-domain argument

δΓ(t). In view of the usual relation between the values in time and frequency domains:

δΓ(t) =
1

π
Re

ω2
∫

ω1

δΓ(ω)e−iωtdω

it can be calculated by numerical integration basing on the values δΓ(ω) computed for a

dense enough set of frequencies covering the required band [ω1, ω2].

Many numerical examples of A-scan pulses computed this way are presented in particu-

lar in the thesis [22]. For comparability sake, let us consider the same isotropic model, like

in [22], with different positions of the same receiving probe in addition to the pulse-echo

records given there (Fig. 5).

Figure 6 gives examples of δΓ(t) for a vertical P-probe with the square contact domain

10 × 10, placed precisely above the horizontal square 6 × 6 crack, located at the depth

zc = −30 in an elastic half-space with vp = 5760 m/s and vs = 3130 m/s. The probe
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Figure 3: Reflected fields |uc| with different probe positions; horizontal (θ = 0o) crack

Figure 4: The same for a tilted (θ = −45o) crack
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Figure 5: Allocation of receivers and the form of input signal
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Figure 6: A-scan pulses δΓ(t) at different receiving points for a horizontal square crack
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Figure 7: The same for an inclined (θ = 45o) elliptic crack
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Figure 8: Calculated received signals |uc(t)| for the same inclined (θ = 45o) elliptic crack
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excites pulses with the frequency spectrum given in a limited band |f − fc| < ∆f :

F (ω) = cos2

(

π(f − fc)

2∆f

)

, ω = 2πf

(F = 0 if |f − fc| > ∆f). In the time-domain this spectrum yields a sharp signal. A

draft of the signal associated with the central frequency fc = 1 MHz and the bandwidth

∆f = 1 MHz considered in the examples is shown in Fig. 5. In the Figs. 6-8 the time

domain signals are normalized to fit the vertical size of subplots.

To calculate the plots δΓ(t) one has, first, to compute values δΓ(ωn) for a set of fre-

quencies ωn covering the required band with a certain frequency step hf . In the examples

below we used hf = 0.01 MHz; that is eq. (4.5) had to be solved about two hundred times

for different ωn = 2πfn, 0 ≤ fn ≤ 2 MHz. Then those tabulated data were interpolated

by splines so that the fast Fourier transform (FFT) procedure became applicable with

any frequencies and time steps.

There are three positions of the center xR = (xR, 0, 0) of the receiving probe: xR =

0, 40 and 80. The first is for the pulse-echo situation considered in [22]. Therefore, as

expected, it looks very similar exhibiting the same arrival time of the reflected pulses.

The maximal pulse at tpp = 10 µs corresponds to the time of the PP response arriving; its

duration is about 4 µs. Besides that, there is a small perturbation centered at the time

of PS signal arriving tps = 15 µs and a very small SS signal at tss = 20 µs. The arrival

of PP, PS, SP and SS wave packages becomes more visible at the remote point xR = 80

with the total ray way |xc| + |xR − xc| = 115.4. The expected arrival times over this ray

path tpp = 20, tsp = 24.4 and tps = 32.5 µs are indicated on the time axis by arrows.

Figure 7 displays δΓ(t) at the same receiver positions but with the inclined elliptic

crack (semiaxes a = 4.8, b = 2.4, θ = 45o), while Fig. 8 gives pulses |uc(t)| for the same

crack orientation. A correlation of these pictures shows that in spite of the variation of

the signal’s forms the records of δΓ(t) and |uc(t)| provide qualitatively similar information

about the structure of scattered fields and about the times of different body waves arriving.

8 Summary

We have presented the analytically based low cost computer model of ultrasonic QNDE,

which simulates wave processes excited and measured by both traditional piezoelectric

transducers and novel laser devices.

The model looks like a useful tool for solution the inverse problem. It makes it possible

to determine crack location by arrivals of scattered waves to different receiving points,

as well as crack orientation and shape through the analysis of surface spots of maximal

reflection and then by fine fitting of the surface patterns.

Along with NDT, the model developed can be used in geophysics.
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