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Abstract

An analytically based approach for solving a transient heat-transfer equation in a

bounded 2D domain is proposed. The major features of the method are: time-

Fourier transformation of the problem, analytical derivation of an elementary par-

ticular solution for a localized radial basis δ-like source using the space-Fourier

transform, expansion of the total particular solution in terms of those elementary

particular solutions, approximation of the homogeneous solution using the method

of fundamental solution, inversion into the time domain using FFT. The prime dis-

tinction of this scheme from the closest analogues lies in the particular solution

construction.

1 Introduction

Numerical solution of heat transfer problems have been well established over the past

four decades. It is well-known that through various types of reduction techniques a given

heat transfer problem is normally converted to a series of elliptical equations which can

be solved by the traditional numerical methods such as finite element, finite difference,

and boundary element methods. To remove the time-dependent variable, the following

approaches are widely adopted: (i) Laplace transform method [1, 2, 3, 4] (ii) finite differ-

ence time stepping scheme [5, 6, 7, 8, 9] (iii) time-space separation method [10, 11]. Since

the numerical inversion of Laplace transform is an ill-posed problem, small truncation

errors are magnified in the numerical inversion process. As a result, the accuracy of the

final result is greatly affected. For time stepping scheme, small time step is required to

achieve a reasonable accuracy. The numerical computation is not cost effective. Further-

more, when the time step is too small, it may also cause other difficulties in numerical

computation [6]. For time-space separation scheme, there are difficulties when the forcing

term is a function of time [11]. A common feature of the first two schemes is that a heat

transfer problem is reduced to a series of nonhomogeneous modified Helmholtz equations.

Notably, in the boundary element literature, dual reciprocity method [3] has been em-

ployed to solve these equations. Chen et al [4] applied the method of particular solution

and the method of fundamental solutions (MFS) [12, 13, 14] to form a boundary meshless

approach with improving results and efficiency. The derivation of closed form particular
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solution for the nonhomogeneous Helmholtz-type equations [14, 15, 16] is crucial for the

success of above mentioned meshless approach. Despite the effectiveness of solving elliptic

problems using either the traditional methods or meshless methods, the overall accuracy

is heavily depend on the treatment of time-dependent variable which is considered as the

bottleneck for solving the heat transfer problems.

It is the purpose of this paper to propose a mesh free method through the use of

Fourier transform to remove the time-dependent variable. As a result, the given heat

transfer problem is reduced to Helmholtz equation in frequency domain. A boundary-type

meshless method is applied to solve Helmholtz equation. Then, the fast Fourier transform

is employed to convert the solution in frequency domain to time domain. The detailed

numerical procedure is given in the next section. Meanwhile, we would like to emphasize

the derivation of a closed form particular solution is also a main focus in this paper. For a

given nonhomogeneous linear elliptic equation, if the fundamental solution and particular

solution are both available, the problem can be solved effortless. In the boundary element

community, the fundamental solutions have been derived for a large class of differential

equations. However, the closed form particular solution are much more difficult to ob-

tain due to the uncertainty of nonhomogeneous term (or forcing term). During the past

decade, intensive research have been conducted to derive close form approximate partic-

ular solutions for Laplacian and Helmholtz-type differential operators [7, 14, 16, 17, 18].

Without the closed form particular solution, the domain integration is normally required.

Hence, the domain discretization and singular integration are necessary. In our meshless

approach, we try to avoid all these time consuming numerical processes. For that, we

propose, in particular, to use expansions in terms of δ-like radial basis functions that

already proved high efficiency with elastodynamic problems [19].

The structure of the paper is as follows. In Section 2, we give an outline of the

solution procedures. In Section 3, we derive an approximate semi-analytic particular

solution for a Helmholtz equation in frequency domain; δ-like radial basis functions have

been employed to approximate the forcing term of nonhomogeneous Helmholtz equation.

In Section 4, a brief introduction of the method of fundamental solutions is given to solve

the homogeneous equation. In Section 5, numerical results in frequency domain of a heat

transfer problem are given. In Section 6, numerical results in time domain are obtained
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using fast Fourier transform. In Section 7, we draw conclusions and discuss directions for

future research.

2 Problem formulation

Let us consider a temperature field T (x, t) in a bounded domain Ω ⊂ R2 governed by the

heat transfer equation

∆T (x,t) =
1

K

∂T (x,t)

∂t
+ f (x,t) , x ∈ Ω, 0 ≤ t <∞, (1)

where x = (x, y) is a space point in 2D, t is time, K = k/ρc is the thermal diffusivity,

k is the thermal conductivity, ρ is the material density, c is the thermal coefficient, and

f(x, t) is a source function. In addition to the heat source f, the field T may be caused

by an initial temperature distribution:

T (x, 0) = T0(x), x ∈ Ω (2)

and by a heat transfer through the boundary S = ∂Ω. Boundary conditions on S =

SD ∪ SN , SD ∩ SN = ∅ can be both of Dirichlet and Newmann types:

T (x, t) = TD(x, t), x ∈ SD, (3)

∂T (x, t)

∂n
= TN(x, t), x ∈ SN , (4)

where x = x(s) ∈ S, s is a parameter of local coordinates along the boundary S, n is

the outward normal to S. Without loss of generality, the action of the sources may be

assumed to be limited in time (i.e. there exists t1 such that f = TD = TN = 0 for t ≥ t1),

or they are absent at all (t1 = 0), so that T decays at infinity; i.e.,

T (x, t) → 0 as t→ ∞ (5)

Using the Fourier transform Ft with respect to the time t ∈ [0,∞), we have

T̂ (x, ω) = Ft[T (x, t)] =

∫

∞

0

T (x, t)eiωtdt, (6)

and the time-domain solution T (x, t) of the Initial Boundary Value Problem (1) - (5) can

be expressed via the Fourier-domain solution T̂ (x, ω) as

T (x, t) = F−1
t [T̂ (x, ω)] =

1

2π

∫

∞

−∞

T̂ (x, ω)e−iωtdω, (7)
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where ω is the Fourier spectral parameter or frequency.

Since no poles of the spectral function T̂ appear in the upper half-plane Imω > 0 of

the complex plane ω, the integration contour in (7) may be displaced upward from the

real axis on some value η; i.e., ω = ω1 + iω2,−∞ < ω1 < ∞, ω2 = η. Such contour

deviation is used to avoid possible singularities on the real axis (in our case in the origin

ω = 0). Based on a well-known property T̂ (x, ω) =T̂ ∗(x, ω̃) (ω̃ = −ω1 + iω2, the star

denotes complex conjugation), integration in the complex plane ω can be reduced to a

ray 0 ≤ ω1 <∞ going at a distance η from the real semi-axis

T (x, t) =
1

π
Re

∫

∞

0

T̂ (x, ω)e−iωtdω1, ω = ω1 + iη, η > 0. (8)

Fourier transform (6) converts the problem (1) - (5) into the form

∆T̂ (x, ω) + λ2T̂ (x, ω) = f̂(x, ω), x ∈ Ω, (9)

T̂ (x, ω) = T̂D(x, ω), x ∈ SD, (10)

∂T̂ (x, ω)

∂n
= T̂N(x, ω), x ∈ SN , (11)

where

λ2 =
iω

K
, f̂(x, ω) = −T0(x)

K
+ f̂ 0(x, ω),

f̂0 = Ft[f ], T̂D= Ft[TD], T̂N= Ft[TN ].

In this way, we have converted the heat transfer problem (1) - (5) into Helmholtz

equation (9) with boundary condition (10) - (11) which is a steady-state harmonic wave

problem except with the complex wave number λ = λ1 + iλ2, λ1 = λ2 =
√

ω/2K instead

of a real wave number (λ2 = 0, waves in ideal non-absorbing media). Therefore, there

is no need to introduce an artificial viscosity ω2 > 0 as it has been carried out in wave

problems in accordance with the principle of limiting absorption. However, the η-shift

from the point of singularity ω = 0 in (8) makes sense regarding the calculation of some

integrals stated below.

In general, T̂ can be obtained as the sum of particular and homogeneous solutions:

T̂ = T̂p + T̂h. The particular solution T̂p satisfies (9), but it does not necessary satisfy the

boundary conditions:

∆T̂p(x, ω) + λ2T̂p(x, ω) = f̂(x, ω), x ∈ Ω, (12)
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while the homogeneous solution satisfies the following homogeneous equation with modi-

fied boundary conditions:

∆T̂h(x, ω) + λ2T̂h(x, ω) = 0, x ∈ Ω, (13)

T̂h(x, ω) = T̂D(x, ω) − T̂p(x, ω), x ∈ SD, (14)

∂T̂h
∂n

(x, ω) = T̂N(x, ω) − ∂Tp
∂n

(x, ω), x ∈ SN . (15)

In this paper we propose the following solution procedures for semi-analytical approx-

imation and numerical evaluation of the total field T (x, t):

1. By the Fourier transform Ft, the initial problem (1) - (4) is converted to solving the

particular solution in (12) and homogeneous solution in (13) - (15).

2. The right-hand side f̂ in (12) is expanded in terms of radial basis functions (RBF)

ϕi associated with the nodes xi of grid points contained in Ω (Fig. 1):

f̂(x, ω) ≈
Ni
∑

i=1

fiϕi(x). (16)

In contrast to the traditional RBF methods [16], ϕi are chosen to be local and δ-like

RBFs.

3. It follows that T̂p ≈
∑

i

fiT̂ i, where T̂ i are particular solutions of the inhomogeneous

equations

∆T̂i + λ2T̂i = ϕi, i = 1, 2, ..., Ni (17)

Using the space Fourier transform over x, y and the residual technique, closed-form

T̂ i(x, ω) in (17) are derived.

4. The homogenous solution T̂(h) is obtained using the method of fundamental solu-

tions (MFS) [13, 14]; i.e., in terms of fundamental solutions g(x) associated with

source points sk which are located outside the domain Ω

T̂h(x, ω) ≈
Ns
∑

k=1

ck(ω)g(x− sk). (18)

Unknown coefficients ck are chosen to satisfy boundary conditions (14) and (15) at

collocation points qj ∈ S, j = 1, 2, ..., Ns, allocated on the boundary.
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5. For a set of test points pl ∈ Ω, the arrays of spectral values T̂ (pl, ωm), ωm =

ω1,m + iη, m = 1, ...,M are calculated. They are used for the functions T̂ (pl, ω)

spline approximation on an interval 0 ≤ ω1 ≤ W giving the main contribution into

the inverse Fourier integral (8).

6. Finally, time-domain solutions T (pl, t) are obtained using the fast Fourier transform

(FFT) for the numerical evaluation of the integrals in (8).

3 Derivation of particular solution

In general, a particular solution of any inhomogeneous linear differential equation with

constant coefficients may be written as a convolution of its fundamental solution with the

forcing term. To derive such a representation for (12), we extend f̂ outside Ω by setting

it to zero and then apply the Fourier transform over space variables x, y:

T̃p(α, ω) = F
x
[T̂p] =

∫

∞

−∞

∫

∞

−∞

T̂p(x, ω)ei<α,x>dxdy (19)

where α = (α1, α2) is the vector of Fourier parameters and < α,x >= α1x + α2y. The

corresponding inverse Fourier transform of T̃p(α, ω) is given by

T̂p(x, ω) = F−1
x

[T̃p] =
1

(2π)2

∫

∞

−∞

∫

∞

−∞

T̃p(α, ω)e−i<α,x>dα1dα2 (20)

Assuming T̂ p ∈ C1(R2), the above Fourier transform further converts (12) to the

following form

(−α2 + λ2)T̃p(α) = F (α) (21)

where α2 = |α|2 = α2
1 + α2

2 and F (α) = F
x
[f̂(x)]. From (21), it follows

T̃p(α) = G(α)F (α) (22)

where G(α) = 1/(−α2 + λ2) is the Fourier symbol of the fundamental solution g(x) for

the Helmholtz operator (9). The inverse transformation yields

T̂p(x) =
1

(2π)2

∫

∞

−∞

∫

∞

−∞

G(α)F (α)e−i<α,x>dα1dα2. (23)

Next, substituting

F (α) =

∫∫

Ω

f̂(ξ)ei<α,ξ>dξ1dξ2, ξ = (ξ1, ξ2)
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into (23) and interchanging the order of integrations, we obtain T̂p as the convolution of

g with f̂ ,

T̂p(x) = (g ∗ f̂)(x) ≡
∫∫

Ω

g(x− ξ)f̂(ξ)dξ1dξ2, (24)

g(x) = F−1
x

[G] =
1

(2π)2

∫

∞

−∞

∫

∞

−∞

G(α)e−i<α,x>dα1dα2. (25)

As is well-known, g(x) in (25) can be derived analytically in terms of the residue from

the pole α = λ; i.e.,

g(x) = − i

4
H

(1)
0 (λr) (26)

where r = |x| =
√

x2 + y2, and H
(1)
0 is the Hankel function [20].

For simple cases (e.g. f̂ = const, Ω is a circle), integrals (23) - (24) can be evaluated

analytically. Another way is to use a cubature expansion for (24) in the form

T̂p(x) ≈ h2

Ni
∑

i=1

g(x − xi)f̂(xi) (27)

where xi are grid nodes contained in Ω with a spacing h. However, this expansion cannot

be used for any x ∈ Ω due to the kernel’s logarithmic singularity g(x) ∼ c ln |x| + O(1),

as x → 0. To obtain a proper numerical result, this singularity has to be extracted

from g(x − ξ) and then integrated explicitly. This task can be achieved if we substitute

expansion (16) for f̂(x) in (23) - (24).

In particular, let the basis functions ϕi in (16) be placed at the nodes xi, ϕi(x) =

ϕ((x−xi)/h, (y−yi)/h), specified by a radial function ϕ(x, y) = ϕ(r), r =
√

x2 + y2. The

axial symmetry of ϕ allows us to gain the most benefit in reducing the four-fold integral

(23) to a one-fold form [19, 21]. Indeed, the Fourier transform of a radial function is also

axially symmetric with respect to the Fourier parameters α1, α2:

F
x
[ϕ] =

∫

∞

−∞

∫

∞

−∞

ϕ(r)ei<α,x>dxdy

=

∫

∞

0

ϕ(r)

∫ 2π

0

eiαr cos(γ−ψ)dγrdr

= 2π

∫

∞

0

ϕ(r)J0(αr)rdr ≡ Φ(α) (28)

In the above derivations we used the change of variables






x = r cosψ

y = r sinψ
,







α1 = α cos γ

α2 = α sin γ
,







r =
√

x2 + y2

α =
√

α2
1 + α2

2

, (29)
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and the integral representation for the Bessel functions [20, 22]

2πinJn(αr) =

∫ 2π

0

eiαr cos(γ−ψ)−inπdγ. (30)

Similarly,

F
x
[ϕi] = h2ei<α,xi>Φ(αh) (31)

so that in (23)

F (α) =
∑

i

fiFx
[ϕi] = h2Φ(αh)

∑

i

fie
i<α,xi>. (32)

Since G(α)Φ(αh) depends only on radial parameter α, we can use the same technique in

the inverse Fourier transform again. As a result, we arrive at the following approximation

T̂p(x) ≈
∑

i

fi T̂i(x) (33)

with

T̂i(x) =
h2

2π

∫

∞

0

G(α)Φ(αh)J0(αri)αdα, (34)

where ri = |x − xi| =
√

(x− xi)2 + (y − yi)2. Obviously, T̂ i(x) in (34) are indeed partic-

ular solutions of (17), which depend only on radial variables ri centered at the grid nodes

xi.

Furthermore, if ϕi are compactly supported radial basis functions, which means ϕ(r) ≡
0 for r ≥ h, a closed form particular solution T̂ i(x) may be derived from (34) for any

ri ≥ h (i.e. outside the h-vicinities of the nodes xi). This can be achieved via unfolding

the integration contour from the semi-axis α ≥ 0 onto the whole real axis −∞ < α <∞
and then closing it in the upper half-plane Imα ≥ 0. To unfold the contour, we use the

following properties of the Bessel and Hankel functions:

J0(αri) =
1

2
[H

(1)
0 (αri) +H

(2)
0 (αri)],

H
(2)
0 (−αri) = −H (1)

0 (αri).

This allows us to convert (34) into the form

T̂i(x) =
h2

4π

∫

∞

−∞

G(α)Φ(αh)H
(1)
0 (αri)αdα. (35)
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From the Jordan lemma [23], the integration path may be closed by a semicircle |α| = R,

0 ≤ γ ≤ π if the integrand tends to zero fast enough as R→ ∞. Notice that

H
(1)
0 (αri) ∼ const · e

iαri

√
αri

, |αri| → ∞,

Φ(αh) ∼ const · e
±iαh

(αh)p
, |αh| → ∞.

As a result, the integrand in (35) decreases exponentially in the upper half-plane for

ri > h. For such ri, integral in (35) can be replaced by the residue from the sole pole

α = λ which is located above the real axis. Then, we have

T̂i(x) = − ih
2

4
Φ(λh)H

(1)
0 (λri), for ri ≥ h. (36)

The explicit analytic form of T̂i(x) in (36) is valid for the most part of situations

occurred later. A few other integrals such as (34) for ri < h are to be evaluated via

numerical integration. It is not too costly due to integrand’s fast decay as α → ∞ even

with ri = 0.

We should remark, by this integration in the Fourier transform domain we indirectly

integrate the kernel singularity as ri → 0, which is a special problem for a cubature

integration of the convolution integrals (24) in the space domain.

Approximation in (16) in terms of radial functions ϕi is similar to image process

using pixel grains in computer graphics or digital photo. Any function f̂(x) given in an

arbitrarily shaped domain can be approximated with a reasonable accuracy if a set of

nodes xi is sufficiently dense. In doing so, the increase of node’s number Ni does not

necessary lead to high computational cost. This is due to the fact that the overwhelming

majority of elements T̂ i(x) forming particular solution T̂ p(x) are evaluated analytically

as shown in (36). Since T̂ i(x) depend only on ri, all of them may be expressed through

only one shape function P (r) centered at the corresponding nodes xi: T̂ i(x) = P (ri). A

tabulation and proper approximation of this function allows one to avoid recalculation of

integrals (34) and Hankel functions in (36).

The approximation of T̂ p(x) in (33) is governed by the coefficients fi, which play a

similar role of pixel’s brightness in computer graphics. In general, these coefficients can

be obtained using the least square minimization or other related algorithms. However,
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with a large number of elements this procedure could be very time-consuming. Therefore,

in line with the main idea of [19], we propose a cost effective way for obtaining fi which

is based on the use of so-called δ-like basis functions as follows:

ϕi(x) = ϕ

(

x − xi

h

)

→ h2δ(x − xi) as h→ 0. (37)

This property holds if

∫

∞

−∞

∫

∞

−∞

ϕ(x)dxdy = 1 and ϕ(0) 6= 0.

In the Fourier transform domain, this is equivalent to the requirements Φ(0) = 1, assuring

the asymptotic behavior

Φi(α) = h2Φ(αh)ei<α,xi> ∼ h2 ei<α,xi> as h→ 0. (38)

A δ-like basis ensures the convergence fi →f̂(xi) as h→ 0 for the coefficients fi found

via minimization of the discrepancy norm ||f̂ −∑

fiϕi||L2
[21]. Thus, with such a basis it

is sufficient to fix fi = f̂(xi). In this way, the cost of obtaining fi remains negligible with

any Ni, especially in practice f̂(x) may be merely given as an array of experimental data

on a set of points.

In particular, one can take the bell-shaped function as a δ-like shape function such as

ϕ(x) =







p+ 1

π
(1 − r2)p, r ≤ 1,

0, r ≥ 1.
(39)

The corresponding Fourier symbol of ϕ(x) is

Φ(α) =
2p+1Γ(p+ 2)Jp+1(α)

αp+1
(40)

where Γ(p+ 2) and Jp+1(α) are Gamma and Bessel functions.

The form of the shape function Φ(α) depends on the power exponent p. In principle, by

tuning p one can achieve some optimal approximating properties of these basis functions.

However, numerical tests show there are little difference for a wide range of p. A convenient

choice of p is π−1 since ϕ(0) = 1. In this case, ϕi(xj) = δij, where δij is Kronecker’s delta,

and expansion (16) with coefficients fi = f̂(xi) provides in addition the exact coincidence

in the grid nodes xj; i.e.,
∑

i

fiϕi(xj) = f̂(xj).
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It is worthy to note that expansion (16) with δ-like basis functions leads to a cubature

approximation of F (α)

F (α) =

∫∫

Ω

f̂(x)ei<α,x>dx ≈ h2
∑

i

f̂(xi)e
i<α,xi>, as αh→ 0. (41)

This is evident from comparison (41) and (32) taking into account (38).

4 Homogeneous solution

After obtaining a particular solution T̂p(x, ω), the homogeneous solution T̂h(x, ω) is deter-

mined by the method of fundamental solutions (MFS) [13, 14]. Based on the formulation

of the MFS, T̂h can be written as the linear combination of the fundamental solutions

g(x− sk) centered in source-points sk which are located outside of the domain Ω (see (18)

and Fig. 1).

Since sk are located outside of Ω, this expansion identically satisfies the homogeneous

equation (13), while the boundary conditions (14) and (15) are to be satisfied by a proper

choice of unknown coefficients {ck}Ns

k=1 in (18). This can be achieved using different

variational approaches such as Galerkin or Petrov-Galerkin discretization schemes. The

most simple in implementation, however, is the collocation method. It is quite applicable

here since we do not expect oscillation of the solution among the collocation points as often

takes place in wave problems. Due to a high attenuation (Imλ = Reλ), a temperature field

governed by (9) normally exhibits a very smooth variation in space and frequency domains.

Hence, by substituting (18) into boundary conditions (14) and (15) at Ns = ND + NN

collocation points {qj}∈ S, we have

Gc = b

where G = [Gjk],b = [bj ], c = [cj] with

Gjk =











g(qj − sk), j = 1, ..., ND,

∂g(qj − sk)

∂nj
, j = ND + 1, ..., Ns,

(42)

bj =











T̂D(qj) − T̂p(qj), j = 1, ..., ND,

T̂N(qj) −
∂T̂p(qj)

∂nj
, j = ND + 1, ..., Ns,

(43)
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and ND is the number of collocation points on SD, ∂/∂nj = ∇ · nj are normal to S

derivatives in the points qj ∈ SN , nj are unit outward normals at these points. The

derivatives act on the Hankel function H
(1)
0 (λr) entering in g(x) and on the particular

solution T̂ p. In view of the properties

J
′

0(x) = −J1(x) and [H
(1)
0 (x)]

′

= −H (1)
1 (x),

we arrive at the following representations

∂g(qj − sk)

∂nj
=
iλ

4
H

(1)
1 (λrjk)

njrjk

rjk
,

∂T̂p(qj)

∂nj
=

∑

i

fi
∂T̂i(qj)

∂nj
,

∂T̂i(qj)

∂nj
=

njρji

ρji
h2























iλ

4
Φ(λh)H

(1)
1 (λρji), ρji > h,

− 1

2π

∫

∞

0

G(α)Φ(αh)J1(αρji)α
2dα, ρji ≤ h,

rjk = qj − sk, rjk = |rjk|

ρji = qj − xi, ρji = |ρji|.

5 Numerical results in the frequency domain

To estimate the working capacity and accuracy of the scheme described above, a system-

atic comparison with the exact solution has been carried out. The test problem is taken

from the example in [24]. It is the rectangular domain Ω: |x| ≤ a, |y| ≤ b with a = b = 0.1

m, the material density ρ = 80 kg/m3, the thermal conductivity k = 0.06 W/mCo and

the thermal coefficient c = 1300 J/kg Co. There is no heat source (f ≡ 0) and the bound-

ary conditions are kept at zero temperature (homogeneous Dirichlet conditions T |S = 0).

Unlike [24], however, the initial temperature distribution is taken to be non-constant:

T0(x) = cos
π

2a
x cos

π

2b
y (44)

which assumes non-trivial approximation for the particular solution, so that the expression

(33) is used in essence.
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The exact solution is given as follows:

T (x, t) = T0(x)e−dt, d = K
(π

2

)2
(

1

a2
+

1

b2

)

. (45)

Its Fourier spectrum is

T̂ (x, ω) =
T0(x)

d− iω
. (46)

For the rest of this example, we use dimensionless parameters with the following set

of units:

l0 = 1 m as the unit of length,

t0 = 103 s as the unit of time, ω0 = 2π · 10−3 s−1 as the unit of frequency,

C0 = 1 Co as the unit of temperature.

In these units, a = b = 0.1, the thermal diffusivity K = 0.00058 and d in (45) is equal

to 0.2862. In all the following numerical examples, the source points sk are placed at the

equal distance from S: dk = a.

Numerical tests have exhibited good agreement between the approximate solution

T̂N =T̂ p+T̂ h and the exact solution T̂ in (46) while using a moderate number of source

points {sk} , i = 1, ..., Ns, and a rather coarse grid for the approximation of T̂ p. With

a higher values Ns and Ni = Nx · Ny, which affect the accuracy of T̂ h and T̂ p respec-

tively, the difference between the numerical and analytical solutions becomes practically

indistinguishable on the plots versus both space and spectral variables x and ω as shown

in Fig. 2. The solid curves show the analytical solution |T̂ | versus ω at three fixed test

points x = pl: p1 = (0, 0), p2 = (a/3, 0) and p3 = (2a/3, 0) (top-down), while the circles

denote the values |T̂N(pl, ωm)| obtained numerically using Ns = 40, Nx = Ny = 100.

The overall accuracy can be evaluated in terms of the integral relative error

Er =

∣

∣

∣

∣

∣

∣

∫∫

Ω

(

T̂ − T̂N

)

dx
∫∫

Ω
T̂ dx

∣

∣

∣

∣

∣

∣

(47)

where T̂ is explicit solution and T̂N is numerical solution. Table 1 shows the Er using

various Ns and Nx = Ny at a fixed ω.

To calculate Er, the integrals in (47) are approximated by a cubature sum over an

evenly distributed testing points pl. For comparability, we took the same grid 20 × 20

with various Ns and Nx.
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Since T̂N is the sum of T̂p and T̂ h, the total accuracy Er could not be better than the

lesser accuracy of each of them. Hence, increasing Ns with a fixed Nx will not improve

the accuracy after a certain point at which T̂h error becomes less than the error of T̂p.

Similarly, Nx (or generally, Ni = Nx ·Ny) should not be taken over a certain value, which

is specific for each given set of source points sk forming T̂h. These limiting values can be

observed in Table 1. For instance, along the table rows the Er continue to improve until

Nx = 50 for Ns = 16;Nx = 200 for Ns = 20;Nx = 400 for Ns = 24, etc. If we observe from

column, Er becomes stable after the row Ns = 32. This means the particular solution T̂p

plays a major role for the total accuracy Er for Ns > 32. With a finer grid xi (that is, with

Nx > 400) this threshold number of the fundamental solutions used for T̂h approximation

also increases which will provide further improvement for Er.

As for a time-domain solution, its accuracy also depends on the accuracy of numerical

evaluation of the inverse Fourier integrals (8).

6 Solution in the time domain

After the evaluation of T̂p(x, ω) in (33) and T̂h(x, ω) in (18) for a set of spectral parameters

ωm = ω1,m + iη,m = 1, 2, ...,M, we proceed to calculate the temperature field T (x, t)

using numerical integration for the inverse Fourier integral (8). A simple and direct way

to approximate it is by the quadrature rule as follows:

T (x, t) ≈ 1

π
Re

M
∑

m=1

T̂ (x, ωm)e−iωmt∆m (48)

where ∆m are quadrature coefficients, e.g. lengths of bases in the rectangular formula.

However, due to oscillation e−iωt this approximation is very sensitive to the value of time

t. To keep the required accuracy as t grows, the number of nodes M may increase so

dramatically that the calculation of T̂ (x, ω) for each ωm becomes very time consuming.

On the other hand, spectrum T̂ (x, ω) does not depend of t, hence nodes ωm may be

fixed disregarding t. The computed values T̂ (x, ωm) are then used to approximate T̂ (x, ω)

in a spectrum interval 0 ≤ Reω ≤ W where upper limit W is determined by the rate of

spectrum decay as Reω → ∞. In our calculation, we use Akima’s spline interpolation

[25] to prevent a superfluous spline winding. As soon as T̂ (x, ω) is properly interpolated,

we can use any number of nodes ωk for the numerical integration without considerable
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computational cost. The best way is to choose ωk so that to get a discrete fast Fourier

transform (FFT) representation. In this way, T (x, t) in N time-points tn are obtained

simultaneously through the values of the integrand in N nodes ωk.

Indeed, let us consider the discrete Fourier transform pair






















X(n) =

N
∑

k=1

Y (k)e−i2π(k−1)(n−1)/N , n = 1, 2, ..., N,

Y (k) =
N

∑

n=1

X(n)ei2π(k−1)(n−1)/N , k = 1, 2, ..., N.

(49)

Since FFT provides very fast X output in response to an input array Y , our primary goal

is to bring (48) to the form (49). For this purpose, let us denote

ω̄1,k =2π(k − 1), t̄n =
(n− 1)

N
, X(n) = T̄n, Y (k) = T̂k.

The first sum in (49) takes the form

T̄n =
N

∑

k=1

T̂ke
−iω̄1,k t̄n (50)

The normalized time-points t̄n lie in the unit interval 0 ≤ t̄n < 1. Therefore, to get the

result in the time-points tn ∈ [0, τ ], it is necessary to re-scale it through the change of

variables

t = τ t̄, ω =
ω̄

τ
. (51)

From (8),

Tn(x) = T (x, tn) =
1

πτ
Re

∫

∞

0

T̂
(

x,
ω̄

τ

)

e−iω̄t̄ndω̄1

≈ 1

πτ
Re

N
∑

k=1

T̂ke
−iω̄1,k t̄neηtn∆ω̄ (52)

where

T̂ k =T̂
(

x,
ω̄k
τ

)

, ωk =
ω̄1,k

τ
+ iη, ∆ω̄ = ω̄1,k+1 − ω̄1,k = 2π.

Therefore, within the accuracy of the integral (8) approximation by the sum (52), we

take

Tn =
2

τ
eηtn Re T̄n (53)

where constants T̄ n are provided by an FFT code on the input T̂ k array in accordance

with (50).
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It should be noted once again, as soon as T̂ (x, ω) is properly approximated, there

are practically no restriction in choosing the number of points N to reach the required

accuracy in the approximation of Tn(x) in (52). It depends on the integration step ∆ω =

∆ω̄/τ = 2π/τ , which is the smaller for the larger time interval τ . Hence, τ should be

taken as large as possible, even if it is required to get results on a limited time interval

τ1 ≤ t ≤ τ2. However, the time-points tn, in which FFT yields T̄ n, cover the interval

0 ≤ t ≤ τ with the step ∆t = τ/N in which tn = (n− 1) · ∆t. With a fixed N , therefore,

τ should not be too large to provide enough points tn on [τ1, τ2].

Generally, N and τ are not independent because the number of spectral points ωk

should be enough to cover the entire interval of numerical integration 0 ≤ ω ≤ W with

the spacing ∆ω. This puts the limitation ωN = N · 2π/τ ≥ W (or τ ≤ 2πN/W ).

A proper choice of these parameters (τ and N) for a given well-approximated T̂ (x, ω)

over ω spectrum provides reasonable accuracy in the time-domain. In Fig. 3, Tn(pl)

(circles) obtained by (53) are plotted together with the exact solution (45) (solid lines).

The test points pl and the spectral functions T̂ (pl, ω) are the same as in Fig. 2. For

the FFT application they were computed in the spectral range 0 ≤ ω ≤ 40 with the step

∆ωm = 0.1 (M = 400), and then approximated by splines. The results in time-domain

are obtained using τ = 1000 and N = 6400 which takes less than one second in a 1.3 GHz

PC. Since T (x, t) is discontinuous at t = 0 (T ≡ 0 for t < 0), the inverse Fourier transform

(7) yields

T (x, 0+) =
1

2
lim
t→0+

T (x, t).

That is why the circles at t = 0 in Fig. 3 lie at about a half height of the corresponding

analytical values.

In Fig. 5, we show a temperature-time plot at the points pl but resulted from the

local initial temperature loading

T0(x, y) =











cos

(

πr

2r0

)

, r ≤ r0,

0, r > r0,

(54)

where r =
√

(x− x0)2 + (y − y0)2, x0 = −a/2, y0 = a/2, r0 = a/3. This temperature

field is shown in Fig. 4 by a grey scale; points pl are marked by dots on the x-axis.

The main special feature of this example is that for a localized initial field T0 the

points lying out of the heated area keep zero temperature until the heat-diffusion flow has
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reached them. After this, the point is getting warm up to a certain maximal temperature

and then, after the maximal heat has passed by, it becomes cooling down. The plots in

Fig. 5 show such behavior. They were calculated using the following input parameters:

W = 40, M = 400, τ = 10000, N = 64000.

7 Conclusion

In this paper we propose a meshless and semi-analytical method for the numerical sim-

ulation of general heat transfer problem with nonzero initial condition in a 2D domain.

The method involves Fourier transforms in time and space domains, and expansions in

terms of classical fundamental and elementary radial partial solutions. A semi-analytical

particular solution using expansion in term of δ-like basis function has been derived which

is one of the main focus of this paper. For the homogeneous solution, the standard MFS

has been employed. We also applied the fast Fourier transform to convert the solution in

the frequency domain to time domain. Numerical tests confirm the applicability of the

proposed approach to a wide class of heat-transfer problems.

The proposed approach provides an alternative for solving heat transfer problems. It

can be also extended to the numerical simulation of wave equations, convection-diffusion

equations, and other nonhomogeneous time-dependent problems.
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Table 1: Relative accuracy Er at ω = 0.5.

Ns \Nx 25 50 100 200 400

16 0.004289 0.001439 0.002806 0.003149 0.003238

20 0.007345 0.001739 0.000354 0.000148 0.000194

24 0.007623 0.002019 0.000599 0.000255 0.000163

28 0.007505 0.001908 0.000489 0.000144 0.000052

32 0.007476 0.001888 0.000468 0.000124 0.000031

40 0.007483 0.001890 0.000468 0.000124 0.000031

100 0.007497 0.001886 0.000468 0.000123 0.000031
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Figure captions

Fig1: Nodes xi, source points sk, collocation points qj, and test points pl.

Fig2: Exact and approximate temperature fields at three test points in the

frequency domain.

Fig3: Exact and approximate temperature fields at three test points in

time-domain.

Fig4: Initial temperature field and reference points.

Fig5: Time-domain solution at the reference points.
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Figure 1: Nodes xi, source points sk, collocation points qj, and test points pl.
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Figure 2: Exact and approximate temperature fields at three test points in the frequency

domain.
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Figure 3: Exact and approximate temperature fields at three test points in time-domain.
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Figure 4: Initial temperature field and reference points
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Figure 5: Time-domain solution at the reference points
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